ray/rllib/examples/cartpole_lstm.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

125 lines
3.7 KiB
Python
Raw Permalink Normal View History

import argparse
import os
from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole
from ray.rllib.utils.test_utils import check_learning_achieved
parser = argparse.ArgumentParser()
parser.add_argument(
"--run", type=str, default="PPO", help="The RLlib-registered algorithm to use."
)
parser.add_argument("--num-cpus", type=int, default=0)
parser.add_argument(
"--framework",
choices=["tf", "tf2", "tfe", "torch"],
default="tf",
help="The DL framework specifier.",
)
parser.add_argument("--eager-tracing", action="store_true")
parser.add_argument("--use-prev-action", action="store_true")
parser.add_argument("--use-prev-reward", action="store_true")
parser.add_argument(
"--as-test",
action="store_true",
help="Whether this script should be run as a test: --stop-reward must "
"be achieved within --stop-timesteps AND --stop-iters.",
)
parser.add_argument(
"--stop-iters", type=int, default=200, help="Number of iterations to train."
)
parser.add_argument(
"--stop-timesteps", type=int, default=100000, help="Number of timesteps to train."
)
parser.add_argument(
"--stop-reward", type=float, default=150.0, help="Reward at which we stop training."
)
if __name__ == "__main__":
import ray
from ray import air, tune
args = parser.parse_args()
ray.init(num_cpus=args.num_cpus or None)
configs = {
"PPO": {
"num_sgd_iter": 5,
"model": {
"vf_share_layers": True,
},
"vf_loss_coeff": 0.0001,
},
"IMPALA": {
"num_workers": 2,
"num_gpus": 0,
"vf_loss_coeff": 0.01,
},
}
config = dict(
configs[args.run],
**{
"env": StatelessCartPole,
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"model": {
"use_lstm": True,
"lstm_cell_size": 256,
"lstm_use_prev_action": args.use_prev_action,
"lstm_use_prev_reward": args.use_prev_reward,
},
"framework": args.framework,
# Run with tracing enabled for tfe/tf2?
"eager_tracing": args.eager_tracing,
}
)
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
# To run the Algorithm without ``Tuner.fit``, using our LSTM model and
# manual state-in handling, do the following:
# Example (use `config` from the above code):
# >> import numpy as np
# >> from ray.rllib.algorithms.ppo import PPO
# >>
# >> algo = PPO(config)
# >> lstm_cell_size = config["model"]["lstm_cell_size"]
# >> env = StatelessCartPole()
# >> obs = env.reset()
# >>
# >> # range(2) b/c h- and c-states of the LSTM.
# >> init_state = state = [
# .. np.zeros([lstm_cell_size], np.float32) for _ in range(2)
# .. ]
# >> prev_a = 0
# >> prev_r = 0.0
# >>
# >> while True:
# >> a, state_out, _ = algo.compute_single_action(
# .. obs, state, prev_a, prev_r)
# >> obs, reward, done, _ = env.step(a)
# >> if done:
# >> obs = env.reset()
# >> state = init_state
# >> prev_a = 0
# >> prev_r = 0.0
# >> else:
# >> state = state_out
# >> prev_a = a
# >> prev_r = reward
tuner = tune.Tuner(
args.run, param_space=config, run_config=air.RunConfig(stop=stop, verbose=2)
)
results = tuner.fit()
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()