ray/rllib/examples/cartpole_lstm.py

194 lines
6.2 KiB
Python
Raw Normal View History

"""Partially observed variant of the CartPole gym environment.
https://github.com/openai/gym/blob/master/gym/envs/classic_control/cartpole.py
We delete the velocity component of the state, so that it can only be solved
by a LSTM policy."""
import argparse
import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
parser = argparse.ArgumentParser()
parser.add_argument("--stop", type=int, default=200)
parser.add_argument("--use-prev-action-reward", action="store_true")
parser.add_argument("--run", type=str, default="PPO")
class CartPoleStatelessEnv(gym.Env):
metadata = {
"render.modes": ["human", "rgb_array"],
"video.frames_per_second": 60
}
def __init__(self, config=None):
self.gravity = 9.8
self.masscart = 1.0
self.masspole = 0.1
self.total_mass = (self.masspole + self.masscart)
self.length = 0.5 # actually half the pole's length
self.polemass_length = (self.masspole * self.length)
self.force_mag = 10.0
self.tau = 0.02 # seconds between state updates
# Angle at which to fail the episode
self.theta_threshold_radians = 12 * 2 * math.pi / 360
self.x_threshold = 2.4
high = np.array([
self.x_threshold * 2,
self.theta_threshold_radians * 2,
])
self.action_space = spaces.Discrete(2)
self.observation_space = spaces.Box(-high, high)
self.seed()
self.viewer = None
self.state = None
self.steps_beyond_done = None
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def step(self, action):
assert self.action_space.contains(
action), "%r (%s) invalid" % (action, type(action))
state = self.state
x, x_dot, theta, theta_dot = state
force = self.force_mag if action == 1 else -self.force_mag
costheta = math.cos(theta)
sintheta = math.sin(theta)
temp = (force + self.polemass_length * theta_dot * theta_dot * sintheta
) / self.total_mass
thetaacc = (self.gravity * sintheta - costheta * temp) / (
self.length *
(4.0 / 3.0 - self.masspole * costheta * costheta / self.total_mass)
)
xacc = (temp -
self.polemass_length * thetaacc * costheta / self.total_mass)
x = x + self.tau * x_dot
x_dot = x_dot + self.tau * xacc
theta = theta + self.tau * theta_dot
theta_dot = theta_dot + self.tau * thetaacc
self.state = (x, x_dot, theta, theta_dot)
done = (x < -self.x_threshold or x > self.x_threshold
or theta < -self.theta_threshold_radians
or theta > self.theta_threshold_radians)
done = bool(done)
if not done:
reward = 1.0
elif self.steps_beyond_done is None:
# Pole just fell!
self.steps_beyond_done = 0
reward = 1.0
else:
self.steps_beyond_done += 1
reward = 0.0
rv = np.r_[self.state[0], self.state[2]]
return rv, reward, done, {}
def reset(self):
self.state = self.np_random.uniform(low=-0.05, high=0.05, size=(4, ))
self.steps_beyond_done = None
rv = np.r_[self.state[0], self.state[2]]
return rv
def render(self, mode="human"):
screen_width = 600
screen_height = 400
world_width = self.x_threshold * 2
scale = screen_width / world_width
carty = 100 # TOP OF CART
polewidth = 10.0
polelen = scale * 1.0
cartwidth = 50.0
cartheight = 30.0
if self.viewer is None:
from gym.envs.classic_control import rendering
self.viewer = rendering.Viewer(screen_width, screen_height)
l, r, t, b = (-cartwidth / 2, cartwidth / 2, cartheight / 2,
-cartheight / 2)
axleoffset = cartheight / 4.0
cart = rendering.FilledPolygon([(l, b), (l, t), (r, t), (r, b)])
self.carttrans = rendering.Transform()
cart.add_attr(self.carttrans)
self.viewer.add_geom(cart)
l, r, t, b = (-polewidth / 2, polewidth / 2,
polelen - polewidth / 2, -polewidth / 2)
pole = rendering.FilledPolygon([(l, b), (l, t), (r, t), (r, b)])
pole.set_color(.8, .6, .4)
self.poletrans = rendering.Transform(translation=(0, axleoffset))
pole.add_attr(self.poletrans)
pole.add_attr(self.carttrans)
self.viewer.add_geom(pole)
self.axle = rendering.make_circle(polewidth / 2)
self.axle.add_attr(self.poletrans)
self.axle.add_attr(self.carttrans)
self.axle.set_color(.5, .5, .8)
self.viewer.add_geom(self.axle)
self.track = rendering.Line((0, carty), (screen_width, carty))
self.track.set_color(0, 0, 0)
self.viewer.add_geom(self.track)
if self.state is None:
return None
x = self.state
cartx = x[0] * scale + screen_width / 2.0 # MIDDLE OF CART
self.carttrans.set_translation(cartx, carty)
self.poletrans.set_rotation(-x[2])
return self.viewer.render(return_rgb_array=mode == "rgb_array")
def close(self):
if self.viewer:
self.viewer.close()
if __name__ == "__main__":
import ray
from ray import tune
args = parser.parse_args()
tune.register_env("cartpole_stateless", lambda _: CartPoleStatelessEnv())
ray.init()
configs = {
"PPO": {
"num_sgd_iter": 5,
"vf_share_layers": True,
"vf_loss_coeff": 0.0001,
},
"IMPALA": {
"num_workers": 2,
"num_gpus": 0,
"vf_loss_coeff": 0.01,
},
}
tune.run(
args.run,
stop={"episode_reward_mean": args.stop},
config=dict(
configs[args.run], **{
"env": "cartpole_stateless",
"model": {
"use_lstm": True,
"lstm_use_prev_action_reward": args.use_prev_action_reward,
},
}),
)