import argparse import os from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole from ray.rllib.utils.test_utils import check_learning_achieved parser = argparse.ArgumentParser() parser.add_argument( "--run", type=str, default="PPO", help="The RLlib-registered algorithm to use." ) parser.add_argument("--num-cpus", type=int, default=0) parser.add_argument( "--framework", choices=["tf", "tf2", "tfe", "torch"], default="tf", help="The DL framework specifier.", ) parser.add_argument("--eager-tracing", action="store_true") parser.add_argument("--use-prev-action", action="store_true") parser.add_argument("--use-prev-reward", action="store_true") parser.add_argument( "--as-test", action="store_true", help="Whether this script should be run as a test: --stop-reward must " "be achieved within --stop-timesteps AND --stop-iters.", ) parser.add_argument( "--stop-iters", type=int, default=200, help="Number of iterations to train." ) parser.add_argument( "--stop-timesteps", type=int, default=100000, help="Number of timesteps to train." ) parser.add_argument( "--stop-reward", type=float, default=150.0, help="Reward at which we stop training." ) if __name__ == "__main__": import ray from ray import air, tune args = parser.parse_args() ray.init(num_cpus=args.num_cpus or None) configs = { "PPO": { "num_sgd_iter": 5, "model": { "vf_share_layers": True, }, "vf_loss_coeff": 0.0001, }, "IMPALA": { "num_workers": 2, "num_gpus": 0, "vf_loss_coeff": 0.01, }, } config = dict( configs[args.run], **{ "env": StatelessCartPole, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), "model": { "use_lstm": True, "lstm_cell_size": 256, "lstm_use_prev_action": args.use_prev_action, "lstm_use_prev_reward": args.use_prev_reward, }, "framework": args.framework, # Run with tracing enabled for tfe/tf2? "eager_tracing": args.eager_tracing, } ) stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } # To run the Algorithm without ``Tuner.fit``, using our LSTM model and # manual state-in handling, do the following: # Example (use `config` from the above code): # >> import numpy as np # >> from ray.rllib.algorithms.ppo import PPO # >> # >> algo = PPO(config) # >> lstm_cell_size = config["model"]["lstm_cell_size"] # >> env = StatelessCartPole() # >> obs = env.reset() # >> # >> # range(2) b/c h- and c-states of the LSTM. # >> init_state = state = [ # .. np.zeros([lstm_cell_size], np.float32) for _ in range(2) # .. ] # >> prev_a = 0 # >> prev_r = 0.0 # >> # >> while True: # >> a, state_out, _ = algo.compute_single_action( # .. obs, state, prev_a, prev_r) # >> obs, reward, done, _ = env.step(a) # >> if done: # >> obs = env.reset() # >> state = init_state # >> prev_a = 0 # >> prev_r = 0.0 # >> else: # >> state = state_out # >> prev_a = a # >> prev_r = reward tuner = tune.Tuner( args.run, param_space=config, run_config=air.RunConfig(stop=stop, verbose=2) ) results = tuner.fit() if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()