2018-09-18 15:09:16 -07:00
|
|
|
import argparse
|
2020-10-02 23:07:44 +02:00
|
|
|
import os
|
2020-05-01 22:59:34 +02:00
|
|
|
|
|
|
|
from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole
|
2020-05-12 08:23:10 +02:00
|
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
2018-09-18 15:09:16 -07:00
|
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
2018-10-15 11:02:50 -07:00
|
|
|
parser.add_argument("--run", type=str, default="PPO")
|
2020-02-15 23:50:44 +01:00
|
|
|
parser.add_argument("--num-cpus", type=int, default=0)
|
2020-05-12 08:23:10 +02:00
|
|
|
parser.add_argument("--torch", action="store_true")
|
|
|
|
parser.add_argument("--as-test", action="store_true")
|
|
|
|
parser.add_argument("--use-prev-action-reward", action="store_true")
|
|
|
|
parser.add_argument("--stop-iters", type=int, default=200)
|
|
|
|
parser.add_argument("--stop-timesteps", type=int, default=100000)
|
|
|
|
parser.add_argument("--stop-reward", type=float, default=150.0)
|
2018-09-18 15:09:16 -07:00
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
import ray
|
|
|
|
from ray import tune
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
2020-02-15 23:50:44 +01:00
|
|
|
ray.init(num_cpus=args.num_cpus or None)
|
2018-10-15 11:02:50 -07:00
|
|
|
|
|
|
|
configs = {
|
|
|
|
"PPO": {
|
|
|
|
"num_sgd_iter": 5,
|
2019-02-22 11:18:51 -08:00
|
|
|
"vf_share_layers": True,
|
|
|
|
"vf_loss_coeff": 0.0001,
|
2018-10-15 11:02:50 -07:00
|
|
|
},
|
|
|
|
"IMPALA": {
|
|
|
|
"num_workers": 2,
|
|
|
|
"num_gpus": 0,
|
|
|
|
"vf_loss_coeff": 0.01,
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
2020-05-12 08:23:10 +02:00
|
|
|
config = dict(
|
2020-10-02 23:07:44 +02:00
|
|
|
configs[args.run],
|
|
|
|
**{
|
2020-05-12 08:23:10 +02:00
|
|
|
"env": StatelessCartPole,
|
2020-10-02 23:07:44 +02:00
|
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
2020-05-12 08:23:10 +02:00
|
|
|
"model": {
|
|
|
|
"use_lstm": True,
|
|
|
|
"lstm_use_prev_action_reward": args.use_prev_action_reward,
|
|
|
|
},
|
2020-05-27 16:19:13 +02:00
|
|
|
"framework": "torch" if args.torch else "tf",
|
2020-05-12 08:23:10 +02:00
|
|
|
})
|
|
|
|
|
|
|
|
stop = {
|
|
|
|
"training_iteration": args.stop_iters,
|
|
|
|
"timesteps_total": args.stop_timesteps,
|
|
|
|
"episode_reward_mean": args.stop_reward,
|
|
|
|
}
|
|
|
|
|
2020-10-01 16:57:10 +02:00
|
|
|
results = tune.run(args.run, config=config, stop=stop, verbose=1)
|
2020-05-12 08:23:10 +02:00
|
|
|
|
|
|
|
if args.as_test:
|
|
|
|
check_learning_achieved(results, args.stop_reward)
|
|
|
|
ray.shutdown()
|