2020-03-31 15:35:03 +02:00
#+PROPERTY : header-args :exports both :output-dir results :session xs :kernel python3
2020-04-06 19:17:48 +02:00
#+HTML_HEAD : <link rel="stylesheet" href="tufte.css" />
#+OPTIONS : html-style:nil
#+HTML_CONTAINER : section
#+TITLE : Investigaton of Monte-Carlo Methods
#+AUTHOR : Valentin Boettcher
2020-03-27 15:43:13 +01:00
2020-03-27 13:39:00 +01:00
* Init
** Required Modules
#+NAME : e988e3f2-ad1f-49a3-ad60-bedba3863283
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :tangle tangled/xs.py
2020-03-27 19:34:22 +01:00
import numpy as np
import matplotlib.pyplot as plt
2020-03-31 15:19:51 +02:00
import monte_carlo
2020-03-27 19:34:22 +01:00
#+end_src
2020-03-27 13:39:00 +01:00
#+RESULTS : e988e3f2-ad1f-49a3-ad60-bedba3863283
** Utilities
#+NAME : 53548778-a4c1-461a-9b1f-0f401df12b08
2020-03-31 15:35:03 +02:00
#+BEGIN_SRC jupyter-python :exports both
2020-03-27 13:39:00 +01:00
%run ../utility.py
2020-03-30 19:19:48 +02:00
%load_ext autoreload
%aimport monte_carlo
2020-03-31 15:19:51 +02:00
%autoreload 1
2020-03-27 13:39:00 +01:00
#+END_SRC
#+RESULTS : 53548778-a4c1-461a-9b1f-0f401df12b08
2020-04-15 18:29:55 +02:00
: The autoreload extension is already loaded. To reload it, use:
: %reload_ext autoreload
2020-03-27 13:39:00 +01:00
2020-03-30 15:43:55 +02:00
* Implementation
2020-03-27 13:39:00 +01:00
#+NAME : 777a013b-6c20-44bd-b58b-6a7690c21c0e
2020-03-31 15:35:03 +02:00
#+BEGIN_SRC jupyter-python :exports both :results raw drawer :exports code :tangle tangled/xs.py
2020-03-27 13:39:00 +01:00
"""
Implementation of the analytical cross section for q q_bar ->
gamma gamma
Author: Valentin Boettcher <hiro@protagon.space >
"""
import numpy as np
# NOTE: a more elegant solution would be a decorator
def energy_factor(charge, esp):
"""
Calculates the factor common to all other values in this module
Arguments:
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
2020-04-01 15:03:38 +02:00
return charge**4/(137.036*esp)* *2/6
2020-03-27 13:39:00 +01:00
2020-03-28 11:43:21 +01:00
def diff_xs(θ, charge, esp):
2020-03-27 13:39:00 +01:00
"""
Calculates the differential cross section as a function of the
2020-03-30 15:43:55 +02:00
azimuth angle θ in units of 1/GeV².
2020-03-27 13:39:00 +01:00
2020-04-01 12:14:35 +02:00
Here dΩ=sinθdθdφ
2020-03-27 13:39:00 +01:00
Arguments:
2020-03-28 11:43:21 +01:00
θ -- azimuth angle
2020-03-27 13:39:00 +01:00
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
2020-03-30 19:19:48 +02:00
return f*((np.cos(θ)* *2+1)/np.sin(θ)* *2)
2020-03-27 13:39:00 +01:00
2020-03-30 19:56:02 +02:00
def diff_xs_cosθ(cosθ, charge, esp):
"""
Calculates the differential cross section as a function of the
cosine of the azimuth angle θ in units of 1/GeV².
2020-04-01 12:14:35 +02:00
Here dΩ=d(cosθ)dφ
2020-03-30 19:56:02 +02:00
Arguments:
2020-03-30 20:26:10 +02:00
cosθ -- cosine of the azimuth angle
2020-03-30 19:56:02 +02:00
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
return f*((cosθ* *2+1)/(1-cosθ* *2))
2020-04-02 15:55:07 +02:00
2020-03-28 11:53:45 +01:00
def diff_xs_eta(η, charge, esp):
2020-03-27 13:39:00 +01:00
"""
Calculates the differential cross section as a function of the
pseudo rapidity of the photons in units of 1/GeV^2.
2020-04-01 12:14:35 +02:00
This is actually the crossection dσ /(dφdη).
2020-03-30 20:26:10 +02:00
Arguments:
2020-04-01 12:14:35 +02:00
η -- pseudo rapidity
2020-03-30 20:26:10 +02:00
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
2020-04-02 09:05:21 +02:00
return f*(np.tanh(η)* *2 + 1)
2020-03-30 20:26:10 +02:00
2020-04-02 15:55:07 +02:00
def diff_xs_p_t(p_t, charge, esp):
"""
Calculates the differential cross section as a function of the
transverse momentum (p_t) of the photons in units of 1/GeV^2.
This is actually the crossection dσ /(dφdp_t).
Arguments:
p_t -- transverse momentum in GeV
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
sqrt_fact = np.sqrt(1-(2*p_t/esp)* *2)
return f/p_t*(1/sqrt_fact + sqrt_fact)
2020-03-28 11:53:45 +01:00
def total_xs_eta(η, charge, esp):
2020-03-27 13:39:00 +01:00
"""
Calculates the total cross section as a function of the pseudo
rapidity of the photons in units of 1/GeV^2. If the rapditiy is
specified as a tuple, it is interpreted as an interval. Otherwise
2020-03-28 11:43:21 +01:00
the interval [-η, η] will be used.
2020-03-27 13:39:00 +01:00
Arguments:
2020-03-28 11:43:21 +01:00
η -- pseudo rapidity (tuple or number)
2020-03-27 13:39:00 +01:00
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementar charge
"""
f = energy_factor(charge, esp)
2020-03-28 11:43:21 +01:00
if not isinstance(η, tuple):
η = (-η, η)
2020-03-27 13:39:00 +01:00
2020-03-28 11:43:21 +01:00
if len(η) != 2:
raise ValueError('Invalid η cut.')
2020-03-27 13:39:00 +01:00
def F(x):
return np.tanh(x) - 2*x
2020-03-28 11:43:21 +01:00
return 2*np.pi*f*(F(η[0]) - F(η[1]))
2020-03-27 13:39:00 +01:00
#+END_SRC
#+RESULTS : 777a013b-6c20-44bd-b58b-6a7690c21c0e
* Calculations
First, set up the input parameters.
2020-03-31 15:35:03 +02:00
#+BEGIN_SRC jupyter-python :exports both :results raw drawer
2020-03-28 11:43:21 +01:00
η = 2.5
2020-03-27 13:39:00 +01:00
charge = 1/3
esp = 200 # GeV
#+END_SRC
2020-04-02 17:37:31 +02:00
#+RESULTS :
2020-03-31 16:40:10 +02:00
2020-03-31 12:16:57 +02:00
Set up the integration and plot intervals.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-03-31 12:16:57 +02:00
interval_η = [-η, η]
interval = η_to_θ([-η, η])
interval_cosθ = np.cos(interval)
2020-04-02 15:55:07 +02:00
interval_pt = np.sort(η_to_pt([0, η], esp/2))
2020-03-31 12:16:57 +02:00
plot_interval = [0.1, np.pi-.1]
#+end_src
2020-03-31 15:19:51 +02:00
#+RESULTS :
2020-04-05 13:55:28 +02:00
#+begin_note
Note that we could utilize the symetry of the integrand throughout,
but that doen't reduce variance and would complicate things now.
#+end_note
2020-04-05 12:30:38 +02:00
** Analytical Integration
And now calculate the cross section in picobarn.
#+BEGIN_SRC jupyter-python :exports both :results raw file :file xs.tex
xs_gev = total_xs_eta(η, charge, esp)
xs_pb = gev_to_pb(xs_gev)
tex_value(xs_pb, unit=r'\pico\barn', prefix=r'\sigma = ',
prec=6, save= ('results', 'xs.tex'))
#+END_SRC
2020-03-27 13:39:00 +01:00
2020-04-05 12:30:38 +02:00
#+RESULTS:
: \(\sigma = \SI{0.053793}{\pico\barn}\)
2020-03-27 14:30:55 +01:00
2020-04-05 12:30:38 +02:00
Lets plot the total xs as a function of η.
#+begin_src jupyter-python :exports both :results raw drawer
fig, ax = set_up_plot()
η_s = np.linspace(0, 3, 1000)
ax.plot(η_s, gev_to_pb(total_xs_eta(η_s, charge, esp)))
ax.set_xlabel(r'$\eta$')
ax.set_ylabel(r'$\sigma$ [pb]')
ax.set_xlim([0, max(η_s)])
ax.set_ylim(0)
2020-04-07 10:07:11 +02:00
save_fig(fig, 'total_xs', 'xs', size=[2.5, 2.5])
2020-04-05 12:30:38 +02:00
#+end_src
2020-04-01 15:03:38 +02:00
2020-04-05 12:30:38 +02:00
#+RESULTS:
2020-04-07 10:07:11 +02:00
[[file:./.ob-jupyter/4522eb3fbeaa14978f9838371acb0650910b8dbf.png ]]
2020-04-01 15:03:38 +02:00
2020-04-05 12:30:38 +02:00
Compared to sherpa, it's pretty close.
#+NAME: 81b5ed93-0312-45dc-beec-e2ba92e22626
#+BEGIN_SRC jupyter-python :exports both :results raw drawer
sherpa = 0.05380
xs_pb - sherpa
#+END_SRC
2020-03-27 14:30:55 +01:00
2020-04-05 12:30:38 +02:00
#+RESULTS: 81b5ed93-0312-45dc-beec-e2ba92e22626
: -6.7112594623469635e-06
2020-03-27 15:43:13 +01:00
2020-04-05 12:30:38 +02:00
I had to set the runcard option ~EW_SCHEME: alpha0~ to use the pure
QED coupling constant.
2020-03-30 19:19:48 +02:00
2020-04-05 12:30:38 +02:00
** Numerical Integration
2020-03-30 19:19:48 +02:00
Plot our nice distribution:
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-07 10:07:11 +02:00
plot_points = np.linspace(*plot_interval, 1000)
2020-03-30 19:19:48 +02:00
2020-04-07 10:07:11 +02:00
fig, ax = set_up_plot()
ax.plot(plot_points, gev_to_pb(diff_xs(plot_points, charge=charge, esp=esp)))
ax.set_xlabel(r'$\theta$')
ax.set_ylabel(r'$d\sigma/d\Omega$ [pb]')
ax.set_xlim([plot_points.min(), plot_points.max()])
ax.axvline(interval[0], color='gray', linestyle= '--')
ax.axvline(interval[1], color='gray', linestyle= '--', label=rf'$|\eta|= {η}$')
ax.legend()
save_fig(fig, 'diff_xs', 'xs', size=[2.5, 2.5])
2020-03-30 19:19:48 +02:00
#+end_src
#+RESULTS :
2020-04-07 10:07:11 +02:00
[[file:./.ob-jupyter/3dd905e7608b91a9d89503cb41660152f3b4b55c.png ]]
2020-03-30 19:19:48 +02:00
Define the integrand.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-03-30 19:19:48 +02:00
def xs_pb_int(θ):
2020-04-01 13:55:22 +02:00
return 2*np.pi*gev_to_pb(np.sin(θ)*diff_xs(θ, charge=charge, esp=esp))
2020-04-02 09:16:33 +02:00
def xs_pb_int_η(η):
return 2*np.pi*gev_to_pb(diff_xs_eta(η, charge, esp))
2020-03-30 19:19:48 +02:00
#+end_src
#+RESULTS :
Plot the integrand. # TODO: remove duplication
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-07 09:57:15 +02:00
fig, ax = set_up_plot()
ax.plot(plot_points, xs_pb_int(plot_points))
ax.set_xlabel(r'$\theta$')
2020-04-08 13:23:50 +02:00
ax.set_ylabel(r'$2\pi\cdot d\sigma/d\theta [pb]')
2020-04-07 09:57:15 +02:00
ax.set_xlim([plot_points.min(), plot_points.max()])
ax.axvline(interval[0], color='gray', linestyle= '--')
ax.axvline(interval[1], color='gray', linestyle= '--', label=rf'$|\eta|= {η}$')
2020-04-08 13:23:50 +02:00
save_fig(fig, 'xs_integrand', 'xs', size=[3, 2.2])
2020-03-30 19:19:48 +02:00
#+end_src
#+RESULTS :
2020-04-08 13:23:50 +02:00
[[file:./.ob-jupyter/ccb6653162c81c3f3e843225cb8d759178f497e0.png ]]
2020-04-05 12:30:38 +02:00
*** Integral over θ
2020-03-30 19:19:48 +02:00
Intergrate σ with the mc method.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-08 13:23:50 +02:00
xs_pb_res = monte_carlo.integrate(xs_pb_int, interval, epsilon=1e-3)
xs_pb_res
2020-03-30 19:19:48 +02:00
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
: IntegrationResult(result=0.05446762390249323, sigma=0.0008255267345438883, N=3062)
2020-03-30 19:19:48 +02:00
2020-03-31 15:19:51 +02:00
We gonna export that as tex.
2020-03-31 16:40:10 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-08 13:23:50 +02:00
tex_value(*xs_pb_res.combined_result, unit=r'\pico\barn',
prefix=r'\sigma = ', save=('results', 'xs_mc.tex'))
tex_value(xs_pb_res.N, prefix=r'N = ', save=('results', 'xs_mc_N.tex'))
2020-03-30 19:19:48 +02:00
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
: \(N = 3062\)
2020-04-02 09:05:21 +02:00
2020-04-05 12:30:38 +02:00
*** Integration over η
2020-04-02 09:16:33 +02:00
Plot the intgrand of the pseudo rap.
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-08 13:23:50 +02:00
fig, ax = set_up_plot()
points = np.linspace(-4, 4, 1000)
ax.set_xlim([-4, 4])
ax.plot(points, xs_pb_int_η(points))
ax.set_xlabel(r'$\eta$')
ax.set_ylabel(r'$2\pi\cdot d\sigma/d\eta$ [pb]')
ax.axvline(interval_η[0], color='gray', linestyle= '--')
ax.axvline(interval_η[1], color='gray', linestyle= '--', label=rf'$|\eta|= {η}$')
save_fig(fig, 'xs_integrand_eta', 'xs', size=[3, 2])
2020-04-02 09:16:33 +02:00
#+end_src
#+RESULTS :
2020-04-08 13:23:50 +02:00
[[file:./.ob-jupyter/87a932866f779a2a07abed4ca251fa98113beca7.png ]]
2020-04-02 09:16:33 +02:00
2020-04-02 09:05:21 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-02 09:16:33 +02:00
xs_pb_η = monte_carlo.integrate(xs_pb_int_η,
2020-04-08 13:23:50 +02:00
interval_η, epsilon=1e-3)
2020-04-02 09:05:21 +02:00
xs_pb_η
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
: IntegrationResult(result=0.055248826717273894, sigma=0.000850578242116393, N=146)
2020-04-02 09:05:21 +02:00
2020-04-05 12:34:51 +02:00
As we see, the result is a little better if we use pseudo rapidity,
because the differential cross section does not difverge anymore. But
becase our η interval is covering the range where all the variance is
occuring, the improvement is rather marginal.
2020-04-02 09:05:21 +02:00
And yet again export that as tex.
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-08 13:23:50 +02:00
tex_value(*xs_pb_η.combined_result, unit=r'\pico\barn', prefix=r'\sigma = ',
2020-04-06 21:25:22 +02:00
save=('results', 'xs_mc_eta.tex'))
2020-04-08 13:23:50 +02:00
tex_value(xs_pb_η.N, prefix=r'N = ', save=('results', 'xs_mc_eta_N.tex'))
2020-04-02 09:05:21 +02:00
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
: \(N = 146\)
2020-04-04 22:20:48 +02:00
2020-04-05 12:30:38 +02:00
*** Using =VEGAS=
2020-04-04 22:20:48 +02:00
Now we use =VEGAS= on the θ parametrisation and see what happens.
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-10 14:51:26 +02:00
num_increments = 11
xs_pb_vegas = monte_carlo.integrate_vegas(
xs_pb_int,
interval,
num_increments=num_increments,
alpha=1,
epsilon=1e-3,
acumulate=False,
vegas_point_density=100,
)
2020-04-09 14:39:28 +02:00
xs_pb_vegas
2020-04-04 22:20:48 +02:00
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
: VegasIntegrationResult(result=0.05298831377390104, sigma=0.00047316856812983164, N=275, increment_borders=array([0.16380276, 0.26548101, 0.40499559, 0.60444615, 0.89082264,
: 1.30461587, 1.82011605, 2.23778302, 2.52798618, 2.72944603,
: 2.87319285, 2.9777899 ]), vegas_iterations=8)
2020-04-04 22:20:48 +02:00
This is pretty good, although the variance reduction may be achieved
2020-04-10 14:51:26 +02:00
partially by accumulating the results from all runns. Here this gives
us one order of magnitude more than we wanted.
2020-04-04 22:20:48 +02:00
And export that as tex.
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-09 14:39:28 +02:00
tex_value(*xs_pb_vegas.combined_result, unit=r'\pico\barn',
2020-04-04 22:20:48 +02:00
prefix=r'\sigma = ', save=('results', 'xs_mc_θ_vegas.tex'))
2020-04-09 14:39:28 +02:00
tex_value(xs_pb_vegas.N, prefix=r'N = ', save=('results', 'xs_mc_θ_vegas_N.tex'))
2020-04-10 14:51:26 +02:00
tex_value(num_increments, prefix=r'K = ', save=('results', 'xs_mc_θ_vegas_K.tex'))
2020-04-04 22:20:48 +02:00
#+end_src
#+RESULTS :
2020-04-10 14:51:26 +02:00
: \(K = 11\)
2020-04-04 22:20:48 +02:00
2020-04-10 14:51:26 +02:00
Surprisingly, acumulation, the result ain't much different.
2020-04-04 22:20:48 +02:00
This depends, of course, on the iteration count.
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-10 14:51:26 +02:00
monte_carlo.integrate_vegas(
xs_pb_int,
interval,
num_increments=num_increments,
alpha=1,
epsilon=1e-3,
acumulate=True,
vegas_point_density=100,
)
2020-04-04 22:20:48 +02:00
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
: VegasIntegrationResult(result=0.0535800515088519, sigma=0.00040500997978091293, N=275, increment_borders=array([0.16380276, 0.28247078, 0.44038447, 0.65707635, 0.95860989,
: 1.36018749, 1.82461022, 2.21635638, 2.50506504, 2.71436708,
: 2.86527609, 2.9777899 ]), vegas_iterations=6)
2020-04-02 09:05:21 +02:00
2020-04-10 14:51:26 +02:00
Let's define some little helpers.
#+begin_src jupyter-python :exports both :tangle tangled/plot_utils.py
def plot_increments(ax, increment_borders, label=None, *args, **kwargs):
"""Plot the increment borders from a list. The first and last one
:param ax: the axis on which to draw
:param list increment_borders: the borders of the increments
:param str label: the label to apply to one of the vertical lines
"""
ax.axvline(x=increment_borders[1], label=label, *args, **kwargs)
for increment in increment_borders[1:-1]:
ax.axvline(x=increment, *args, **kwargs)
2020-04-12 14:42:29 +02:00
def plot_vegas_weighted_distribution(
ax, points, dist, increment_borders, *args, **kwargs
):
2020-04-10 14:51:26 +02:00
"""Plot the distribution with VEGAS weights applied.
:param ax: axis
:param points: points
:param dist: distribution
:param increment_borders: increment borders
"""
num_increments = increment_borders.size
weighted_dist = dist.copy()
2020-04-12 14:42:29 +02:00
for left_border, right_border in zip(increment_borders[:-1], increment_borders[1:]):
2020-04-10 14:51:26 +02:00
length = right_border - left_border
mask = (left_border <= points) & (points <= right_border)
2020-04-12 14:42:29 +02:00
weighted_dist[mask] = dist[mask] * num_increments * length
2020-04-10 14:51:26 +02:00
ax.plot(points, weighted_dist, *args, **kwargs)
2020-04-12 14:42:29 +02:00
def plot_stratified_rho(ax, points, increment_borders, *args, **kwargs):
"""Plot the weighting distribution resulting from the increment
borders.
:param ax: axis
:param points: points
:param increment_borders: increment borders
"""
num_increments = increment_borders.size
ρ = np.empty_like(points)
for left_border, right_border in zip(increment_borders[:-1], increment_borders[1:]):
length = right_border - left_border
mask = (left_border <= points) & (points <= right_border)
ρ [mask] = 1 / (num_increments * length)
ax.plot(points, ρ , *args, **kwargs)
2020-04-10 14:51:26 +02:00
#+end_src
#+RESULTS :
And now we plot the integrand with the incremens.
#+begin_src jupyter-python :exports both :results raw drawer
fig, ax = set_up_plot()
ax.set_xlim(*interval)
ax.set_xlabel(r"$\theta$")
ax.set_ylabel(r"$2\pi\cdot d\sigma/d\theta$ [pb]")
ax.set_ylim([0, 0.09])
2020-04-12 14:42:29 +02:00
ax.plot(plot_points, xs_pb_int(plot_points), label="Distribution")
2020-04-10 14:51:26 +02:00
plot_increments(
ax,
xs_pb_vegas.increment_borders,
label="Increment Borders",
color="gray",
linestyle="--",
)
plot_vegas_weighted_distribution(
ax,
plot_points,
xs_pb_int(plot_points),
xs_pb_vegas.increment_borders,
2020-04-12 14:42:29 +02:00
label="Weighted Distribution",
2020-04-10 14:51:26 +02:00
)
ax.legend(fontsize="small", loc= "lower left")
save_fig(fig, "xs_integrand_vegas", "xs", size=[5, 3])
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
[[file:./.ob-jupyter/758cf975863edaae1cd9d3b4683ce494e736ddb7.png ]]
2020-04-05 12:30:38 +02:00
*** Testing the Statistics
2020-04-02 17:37:31 +02:00
Let's battle test the statistics.
#+begin_src jupyter-python :exports both :results raw drawer
num_runs = 1000
num_within = 0
for _ in range(num_runs):
2020-04-08 13:23:50 +02:00
val, err = \
monte_carlo.integrate(xs_pb_int, interval, epsilon=1e-3).combined_result
2020-04-02 17:37:31 +02:00
if abs(xs_pb - val) <= err:
num_within += 1
num_within/num_runs
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
: 0.665
2020-04-02 17:37:31 +02:00
So we see: the standard deviation is sound.
2020-04-06 21:25:22 +02:00
Doing the same thing with =VEGAS= works as well.
2020-04-04 22:20:48 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-05 13:55:28 +02:00
num_runs = 1000
num_within = 0
for _ in range(num_runs):
2020-04-09 14:39:28 +02:00
val, err = \
2020-04-05 13:55:28 +02:00
monte_carlo.integrate_vegas(xs_pb_int, interval,
2020-04-09 14:39:28 +02:00
num_increments=10, alpha=1,
epsilon=1e-3, acumulate=False,
vegas_point_density=100).combined_result
2020-04-06 20:33:37 +02:00
2020-04-05 13:55:28 +02:00
if abs(xs_pb - val) <= err:
num_within += 1
num_within/num_runs
2020-04-04 22:20:48 +02:00
#+end_src
#+RESULTS :
2020-04-12 14:42:29 +02:00
: 0.691
2020-04-04 22:20:48 +02:00
2020-04-05 12:30:38 +02:00
** Sampling and Analysis
2020-03-31 15:19:51 +02:00
Define the sample number.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-14 10:24:57 +02:00
sample_num = 10000
2020-04-14 16:57:10 +02:00
tex_value(
sample_num, prefix="N = ", save=("results", "4imp-sample-size.tex"),
)
2020-03-31 15:19:51 +02:00
#+end_src
#+RESULTS :
2020-04-14 16:57:10 +02:00
: \(N = 10000\)
2020-04-02 15:55:07 +02:00
Let's define shortcuts for our distributions. The 2π are just there
for formal correctnes. Factors do not influecence the outcome.
2020-03-31 19:06:14 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-05 13:55:28 +02:00
def dist_cosθ(x):
2020-04-12 14:42:29 +02:00
return gev_to_pb(diff_xs_cosθ(x, charge, esp))
2020-04-02 15:55:07 +02:00
def dist_η(x):
2020-04-12 14:42:29 +02:00
return gev_to_pb(diff_xs_eta(x, charge, esp))
2020-03-31 19:06:14 +02:00
#+end_src
#+RESULTS :
2020-04-05 12:30:38 +02:00
*** Sampling the cosθ cross section
2020-04-02 15:55:07 +02:00
2020-03-31 19:06:14 +02:00
Now we monte-carlo sample our distribution. We observe that the efficiency his very bad!
#+begin_src jupyter-python :exports both :results raw drawer
cosθ_sample, cosθ_efficiency = \
2020-04-05 13:55:28 +02:00
monte_carlo.sample_unweighted_array(sample_num, dist_cosθ,
2020-03-31 19:06:14 +02:00
interval_cosθ, report_efficiency=True)
cosθ_efficiency
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
: 0.027528608061949504
2020-04-12 14:42:29 +02:00
Let's save that.
#+begin_src jupyter-python :exports both :results raw drawer
tex_value(
cosθ_efficiency * 100,
prefix=r"\mathfrak{e} = ",
suffix=r"\%",
save=("results", "naive_th_samp.tex"),
)
#+end_src
#+RESULTS :
: \(\mathfrak{e} = 3\%\)
2020-03-31 19:06:14 +02:00
Our distribution has a lot of variance, as can be seen by plotting it.
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-05 13:55:28 +02:00
pts = np.linspace(*interval_cosθ, 100)
fig, ax = set_up_plot()
ax.plot(pts, dist_cosθ(pts))
ax.set_xlabel(r'$\cos\theta$')
ax.set_ylabel(r'$\frac{d\sigma}{d\Omega}$')
2020-03-31 19:06:14 +02:00
#+end_src
#+RESULTS :
2020-04-03 14:05:30 +02:00
:RESULTS:
2020-04-05 13:55:28 +02:00
: Text(0, 0.5, '$\\frac{d\\sigma}{d\\Omega}$')
2020-04-12 14:42:29 +02:00
[[file:./.ob-jupyter/a9e1c809c0f72c09ab5e91022ecd407fcc833d95.png ]]
2020-04-03 14:05:30 +02:00
:END:
2020-03-31 19:06:14 +02:00
We define a friendly and easy to integrate upper limit function.
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-12 14:42:29 +02:00
fig, ax = set_up_plot()
upper_limit = dist_cosθ(interval_cosθ[0]) / interval_cosθ[0] ** 2
2020-04-05 13:55:28 +02:00
upper_base = dist_cosθ(0)
2020-03-31 19:06:14 +02:00
2020-04-12 14:42:29 +02:00
2020-03-31 19:06:14 +02:00
def upper(x):
2020-04-12 14:42:29 +02:00
return upper_base + upper_limit * x ** 2
2020-03-31 19:06:14 +02:00
def upper_int(x):
2020-04-12 14:42:29 +02:00
return upper_base * x + upper_limit * x ** 3 / 3
2020-03-31 19:06:14 +02:00
2020-04-12 14:42:29 +02:00
ax.plot(pts, upper(pts), label="upper bound")
ax.plot(pts, dist_cosθ(pts), label=r"$f_ {\cos\theta}$")
ax.legend(fontsize='small')
ax.set_xlabel(r"$\cos\theta$")
ax.set_ylabel(r"$\frac{d\sigma}{d\cos\theta}$ [pb]")
save_fig(fig, "upper_bound", "xs_sampling", size=(3, 2.5))
2020-03-31 19:06:14 +02:00
#+end_src
#+RESULTS :
2020-04-12 14:42:29 +02:00
[[file:./.ob-jupyter/647593b36e5170280820c31c63b884cae0ebbee6.png ]]
2020-03-31 19:06:14 +02:00
2020-03-30 20:26:10 +02:00
2020-03-31 19:06:14 +02:00
To increase our efficiency, we have to specify an upper bound. That is
at least a little bit better. The numeric inversion is horribly inefficent.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-12 14:42:29 +02:00
cosθ_sample_tuned, cosθ_efficiency_tuned = \
2020-04-05 13:55:28 +02:00
monte_carlo.sample_unweighted_array(sample_num, dist_cosθ,
2020-03-31 19:06:14 +02:00
interval_cosθ, report_efficiency=True,
upper_bound=[upper, upper_int])
2020-04-12 14:42:29 +02:00
cosθ_efficiency_tuned
2020-03-30 19:56:02 +02:00
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
: 0.07922836784545058
2020-04-06 19:17:48 +02:00
<<cosθ-bare-eff >>
2020-03-30 19:56:02 +02:00
2020-04-12 14:42:29 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
tex_value(
cosθ_efficiency_tuned * 100,
prefix=r"\mathfrak{e} = ",
suffix=r"\%",
save=("results", "tuned_th_samp.tex"),
)
#+end_src
#+RESULTS :
: \(\mathfrak{e} = 8\%\)
# TODO: Looks fishy
2020-03-30 19:56:02 +02:00
Nice! And now draw some histograms.
We define an auxilliary method for convenience.
2020-04-05 12:30:38 +02:00
#+begin_src jupyter-python :exports both :results raw drawer :tangle tangled/plot_utils.py
2020-04-05 13:55:28 +02:00
"""
Some shorthands for common plotting tasks related to the investigation
of monte-carlo methods in one rimension.
Author: Valentin Boettcher <hiro at protagon.space >
"""
2020-04-05 12:30:38 +02:00
import matplotlib.pyplot as plt
2020-04-14 16:57:10 +02:00
2020-04-15 18:29:55 +02:00
def draw_histo(points, xlabel, bins=50):
2020-04-02 16:33:30 +02:00
heights, edges = np.histogram(points, bins)
2020-04-14 16:57:10 +02:00
centers = (edges[1:] + edges[:-1]) / 2
2020-04-02 16:33:30 +02:00
deviations = np.sqrt(heights)
2020-04-15 18:29:55 +02:00
integral = heights @ (edges[1:] - edges[:-1])
heights = heights/integral
deviations = deviations/integral
2020-04-02 16:33:30 +02:00
2020-03-30 19:56:02 +02:00
fig, ax = set_up_plot()
2020-04-14 16:57:10 +02:00
ax.errorbar(centers, heights, deviations, linestyle="none", color= "orange")
ax.step(edges, [heights[0], *heights], color="#1f77b4")
2020-04-02 16:33:30 +02:00
2020-03-30 19:56:02 +02:00
ax.set_xlabel(xlabel)
2020-04-14 16:57:10 +02:00
ax.set_ylabel("Count")
2020-03-30 19:56:02 +02:00
ax.set_xlim([points.min(), points.max()])
return fig, ax
2020-03-30 19:19:48 +02:00
#+end_src
2020-03-30 19:56:02 +02:00
#+RESULTS :
The histogram for cosθ.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-03-30 19:56:02 +02:00
fig, _ = draw_histo(cosθ_sample, r'$\cos\theta$')
2020-03-31 15:19:51 +02:00
save_fig(fig, 'histo_cos_theta', 'xs', size=(4,3))
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
[[file:./.ob-jupyter/f900cd1f2938395ee04417e0c8369c23d883622c.png ]]
2020-03-31 15:19:51 +02:00
2020-04-05 12:30:38 +02:00
*** Observables
2020-04-02 15:55:07 +02:00
Now we define some utilities to draw real 4-momentum samples.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :tangle tangled/xs.py
2020-04-02 16:35:43 +02:00
def sample_momenta(sample_num, interval, charge, esp, seed=None):
"""Samples `sample_num` unweighted photon 4-momenta from the
2020-04-02 16:33:30 +02:00
cross-section.
2020-03-31 15:19:51 +02:00
:param sample_num: number of samples to take
:param interval: cosθ interval to sample from
:param charge: the charge of the quark
:param esp: center of mass energy
:param seed: the seed for the rng, optional, default is system
time
2020-04-02 16:35:43 +02:00
:returns: an array of 4 photon momenta
2020-04-02 16:33:30 +02:00
2020-03-31 15:19:51 +02:00
:rtype: np.ndarray
"""
cosθ_sample = \
monte_carlo.sample_unweighted_array(sample_num,
lambda x:
diff_xs_cosθ(x, charge, esp),
interval_cosθ)
φ_sample = np.random.uniform(0, 1, sample_num)
2020-04-02 15:55:07 +02:00
def make_momentum(esp, cosθ, φ):
2020-03-31 15:19:51 +02:00
sinθ = np.sqrt(1-cosθ**2)
return np.array([1, sinθ*np.cos(φ), sinθ*np.sin(φ), cosθ])*esp/2
2020-04-02 16:35:43 +02:00
momenta = np.array([make_momentum(esp, cosθ, φ) \
2020-03-31 15:19:51 +02:00
for cosθ, φ in np.array([cosθ_sample, φ_sample]).T])
2020-04-02 16:35:43 +02:00
return momenta
2020-03-31 15:19:51 +02:00
#+end_src
#+RESULTS :
2020-03-31 15:35:03 +02:00
To generate histograms of other obeservables, we have to define them
as functions on 4-impuleses. Using those to transform samples is
analogous to transforming the distribution itself.
2020-04-07 09:57:15 +02:00
#+begin_src jupyter-python :session obs :exports both :results raw drawer :tangle tangled/observables.py
2020-03-31 15:19:51 +02:00
"""This module defines some observables on arrays of 4-pulses."""
import numpy as np
def p_t(p):
2020-04-02 15:55:07 +02:00
"""Transverse momentum
2020-03-31 15:19:51 +02:00
2020-04-02 16:35:43 +02:00
:param p: array of 4-momenta
2020-03-31 15:19:51 +02:00
"""
return np.linalg.norm(p[:,1:3], axis=1)
def η(p):
"""Pseudo rapidity.
2020-04-02 16:35:43 +02:00
:param p: array of 4-momenta
2020-03-31 15:19:51 +02:00
"""
return np.arccosh(np.linalg.norm(p[:,1:], axis=1)/p_t(p))*np.sign(p[:, 3])
2020-03-30 19:56:02 +02:00
#+end_src
#+RESULTS :
2020-04-07 09:57:15 +02:00
And import them.
#+begin_src jupyter-python :exports both :results raw drawer
%aimport tangled.observables
obs = tangled.observables
#+end_src
#+RESULTS :
2020-03-31 15:19:51 +02:00
Lets try it out.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-14 10:24:57 +02:00
momentum_sample = sample_momenta(sample_num, interval_cosθ, charge, esp)
2020-04-02 15:55:07 +02:00
momentum_sample
2020-03-30 19:56:02 +02:00
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
: array([[100. , 81.88196716, 43.22434263, -37.77564902],
: [100. , 24.77634994, 23.19908007, 94.06346351],
: [100. , 89.63521528, 37.54354171, -23.57987825],
2020-03-31 15:35:03 +02:00
: ...,
2020-04-15 18:29:55 +02:00
: [100. , 21.790537 , 11.38406619, -96.93077702],
: [100. , 48.21722876, 20.13959487, -85.26133689],
: [100. , 25.93488982, 1.49987455, -96.56672236]])
2020-04-14 10:24:57 +02:00
2020-03-30 20:26:10 +02:00
2020-03-31 15:19:51 +02:00
Now let's make a histogram of the η distribution.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-07 09:57:15 +02:00
η_sample = obs.η(momentum_sample)
2020-04-14 16:57:10 +02:00
fig, ax = draw_histo(η_sample, r'$\eta$')
save_fig(fig, 'histo_eta', 'xs_sampling', size=[3, 3])
2020-03-31 15:19:51 +02:00
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
[[file:./.ob-jupyter/48d534ff204e6aa5636746b1fccef3658ca24720.png ]]
2020-03-31 15:19:51 +02:00
2020-04-02 15:55:07 +02:00
And the same for the p_t (transverse momentum) distribution.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-07 09:57:15 +02:00
p_t_sample = obs.p_t(momentum_sample)
2020-04-14 16:57:10 +02:00
fig, ax = draw_histo(p_t_sample, r"$p_T$ [GeV]")
save_fig(fig, "histo_pt", "xs_sampling", size=[3, 3])
2020-04-02 15:55:07 +02:00
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
[[file:./.ob-jupyter/4634a469d94a5a88eecf2d1f00068180fe285bbb.png ]]
2020-04-02 15:55:07 +02:00
That looks somewhat fishy, but it isn't.
#+begin_src jupyter-python :exports both :results raw drawer
fig, ax = set_up_plot()
points = np.linspace(interval_pt[0], interval_pt[1] - .01, 1000)
ax.plot(points, gev_to_pb(diff_xs_p_t(points, charge, esp)))
ax.set_xlabel(r'$p_T$')
ax.set_xlim(interval_pt[0], interval_pt[1] + 1)
ax.set_ylim([0, gev_to_pb(diff_xs_p_t(interval_pt[1] -.01, charge, esp))])
ax.set_ylabel(r'$\frac{d\sigma}{dp_t}$ [pb]')
2020-04-14 16:57:10 +02:00
save_fig(fig, 'diff_xs_p_t', 'xs_sampling', size=[4, 2])
2020-04-02 15:55:07 +02:00
#+end_src
#+RESULTS :
2020-04-14 16:57:10 +02:00
[[file:./.ob-jupyter/29724b8c1f2b0005a05f64f999cf95d248ee0082.png ]]
2020-04-02 15:55:07 +02:00
this is strongly peaked at p_t=100GeV. (The jacobian goes like 1/x there!)
2020-04-05 12:30:38 +02:00
*** Sampling the η cross section
2020-04-02 16:33:30 +02:00
An again we see that the efficiency is way, way! better...
2020-04-02 15:55:07 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-14 16:57:10 +02:00
η_sample, η_efficiency = monte_carlo.sample_unweighted_array(
sample_num, dist_η, interval_η, report_efficiency=True
)
tex_value(
η_efficiency * 100,
prefix=r"\mathfrak{e} = ",
suffix=r"\%",
save=("results", "eta_eff.tex"),
)
2020-04-02 15:55:07 +02:00
#+end_src
#+RESULTS :
2020-04-14 16:57:10 +02:00
: \(\mathfrak{e} = 41\%\)
2020-04-06 19:17:48 +02:00
<<η-eff >>
2020-04-02 15:55:07 +02:00
Let's draw a histogram to compare with the previous results.
#+begin_src jupyter-python :exports both :results raw drawer
draw_histo(η_sample, r'$\eta$')
2020-03-30 20:26:10 +02:00
#+end_src
#+RESULTS :
2020-04-03 14:05:30 +02:00
:RESULTS:
2020-04-15 18:29:55 +02:00
# [goto error]
#+begin_example
TypeErrorTraceback (most recent call last)
<ipython-input-152-135da139cc01 > in <module >
----> 1 draw_histo(η_sample, r'$\eta$')
<ipython-input-143-0369283d77d0 > in draw_histo(points, xlabel, bins)
14 deviations = np.sqrt(heights)
15 integral = heights @ (edges[1:] - edges[:-1])
---> 16 heights /= integral
17 deviations /= integral
18
TypeError: ufunc 'true_divide' output (typecode 'd') could not be coerced to provided output parameter (typecode 'l') according to the casting rule ''same_kind''
#+end_example
2020-04-03 14:05:30 +02:00
:END:
2020-04-07 10:07:11 +02:00
2020-04-02 15:55:07 +02:00
Looks good to me :).
2020-04-07 10:07:11 +02:00
2020-04-05 12:34:51 +02:00
*** Sampling with =VEGAS=
2020-04-05 13:55:28 +02:00
To get the increments, we have to let =VEGAS= loose on our
distribution. We throw away the integral, but keep the increments.
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-12 14:42:29 +02:00
K = 10
increments = monte_carlo.integrate_vegas(
dist_cosθ, interval_cosθ, num_increments=K, alpha=1, increment_epsilon=0.001
).increment_borders
tex_value(
K, prefix=r"K = ", save=("results", "vegas_samp_num_increments.tex"),
)
2020-04-05 13:55:28 +02:00
increments
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
: array([-0.9866143 , -0.9696821 , -0.93140574, -0.84140036, -0.60391287,
: -0.0080662 , 0.59861242, 0.83680834, 0.93037032, 0.96942902,
2020-04-10 14:51:26 +02:00
: 0.9866143 ])
2020-04-05 13:55:28 +02:00
Visualizing the increment borders gives us the information we want.
#+begin_src jupyter-python :exports both :results raw drawer
pts = np.linspace(*interval_cosθ, 100)
fig, ax = set_up_plot()
ax.plot(pts, dist_cosθ(pts))
ax.set_xlabel(r'$\cos\theta$')
ax.set_ylabel(r'$\frac{d\sigma}{d\Omega}$')
ax.set_xlim(*interval_cosθ)
plot_increments(ax, increments,
label='Increment Borderds', color= 'gray', linestyle='--')
ax.legend()
#+end_src
#+RESULTS :
:RESULTS:
2020-04-15 18:29:55 +02:00
: <matplotlib.legend.Legend at 0x7fb32e85b6d0 >
[[file:./.ob-jupyter/225f173c081af4bd603b1f1c8a148ad3c6950364.png ]]
2020-04-05 13:55:28 +02:00
:END:
We can now plot the reweighted distribution to observe the variance
reduction visually.
#+begin_src jupyter-python :exports both :results raw drawer
pts = np.linspace(*interval_cosθ, 1000)
fig, ax = set_up_plot()
2020-04-12 14:42:29 +02:00
ax.plot(pts, dist_cosθ(pts), label="Distribution")
plot_vegas_weighted_distribution(
ax, pts, dist_cosθ(pts), increments, label="Weighted Distribution"
)
ax.set_xlabel(r"$\cos\theta$")
ax.set_ylabel(r"$\frac{d\sigma}{d\cos\theta}$")
2020-04-05 13:55:28 +02:00
ax.set_xlim(*interval_cosθ)
2020-04-12 14:42:29 +02:00
plot_increments(
ax, increments, label="Increment Borderds", color= "gray", linestyle="--"
)
ax.legend(fontsize="small")
save_fig(fig, "vegas_strat_dist", "xs_sampling", size=(3, 2.3))
2020-04-05 13:55:28 +02:00
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
[[file:./.ob-jupyter/3627649a346f32e23d7dc55f4f54ead6f7c8c631.png ]]
2020-04-05 13:55:28 +02:00
2020-04-06 19:17:48 +02:00
2020-04-12 14:42:29 +02:00
I am batman! Let's plot the weighting distribution.
#+begin_src jupyter-python :exports both :results raw drawer
pts = np.linspace(*interval_cosθ, 1000)
fig, ax = set_up_plot()
plot_stratified_rho(ax, pts, increments)
ax.set_xlabel(r"$\cos\theta$")
ax.set_ylabel(r"$\rho")
ax.set_xlim(*interval_cosθ)
save_fig(fig, "vegas_rho", "xs_sampling", size=(3, 2.3))
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
[[file:./.ob-jupyter/535b557096180f27688951eedf76fc9347051519.png ]]
2020-04-12 14:42:29 +02:00
2020-04-06 19:17:48 +02:00
Now, draw a sample and look at the efficiency.
2020-04-06 18:21:10 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
cosθ_sample_strat, cosθ_efficiency_strat = \
monte_carlo.sample_unweighted_array(sample_num, dist_cosθ,
increment_borders=increments,
report_efficiency=True)
cosθ_efficiency_strat
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
: 0.57751
2020-04-12 14:42:29 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
tex_value(
cosθ_efficiency_strat * 100,
prefix=r"\mathfrak{e} = ",
suffix=r"\%",
save=("results", "strat_th_samp.tex"),
)
#+end_src
#+RESULTS :
: \(\mathfrak{e} = 58\%\)
2020-04-05 21:12:02 +02:00
2020-04-06 19:17:48 +02:00
If we compare that to [[cosθ-bare-eff ]], we can see the improvement :P.
It is even better the [[η-eff ]]. The histogram looks just the same.
2020-04-06 18:21:10 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
fig, _ = draw_histo(cosθ_sample_strat, r'$\cos\theta$')
save_fig(fig, 'histo_cos_theta_strat', 'xs', size=(4,3))
#+end_src
#+RESULTS :
2020-04-15 18:29:55 +02:00
[[file:./.ob-jupyter/a897f7c69f8ce079d652c731b2097849480a8a50.png ]]
2020-04-15 16:55:14 +02:00
*** Some Histograms with Rivet
**** Init
#+begin_src jupyter-python :exports both :results raw drawer
import yoda
#+end_src
#+RESULTS :
**** Plot the Histos
#+RESULTS :
#+begin_src jupyter-python :exports both :results raw drawer :tangle tangled/plot_utils.py
def draw_yoda_histo(h, xlabel):
edges = np.append(h.xMins(), h.xMax())
heights = np.append(h.yVals(), h.yVals()[-1])
centers = (edges[1:] + edges[:-1]) / 2
fig, ax = set_up_plot()
ax.errorbar(h.xVals(), h.yVals(), h.yErrs(), linestyle="none", color= "orange")
ax.step(edges, heights, color="#1f77b4", where= "post")
ax.set_xlabel(xlabel)
ax.set_ylabel("Count")
ax.set_xlim([h.xMin(), h.xMax()])
return fig, ax
#+end_src
#+RESULTS :
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-15 18:29:55 +02:00
yoda_file = yoda.read("../../runcards/qqgg/analysis/Analysis.yoda")
2020-04-16 18:37:37 +02:00
sherpa_histos = {"pT": r"$p_T$ [GeV]", "eta": r"$\eta$", "cos_theta": r"$\cos\theta$"}
2020-04-15 16:55:14 +02:00
for key, label in sherpa_histos.items():
2020-04-16 18:37:37 +02:00
fig, _ = draw_yoda_histo(
yoda_file["/MC_DIPHOTON_SIMPLE/ " + key], r"Sherpa " + label
)
2020-04-15 18:29:55 +02:00
save_fig(fig, "histo_sherpa_ " + key, "xs_sampling", size=(3, 3))
2020-04-15 16:55:14 +02:00
#+end_src
#+RESULTS :
:RESULTS:
2020-04-16 18:37:37 +02:00
[[file:./.ob-jupyter/c1f4d8e88a3a3e602e28e771b24c0f129f9854cf.png ]]
2020-04-15 18:29:55 +02:00
[[file:./.ob-jupyter/1daef5b1773483e0e176cac4a738f1c671c7becb.png ]]
[[file:./.ob-jupyter/a1bf8dec2faba69b35d48499c06ada0588ae713b.png ]]
2020-04-15 16:55:14 +02:00
:END: