bachelor_thesis/prog/python/qqgg/analytical_xs.org

448 lines
14 KiB
Org Mode
Raw Normal View History

2020-03-31 15:35:03 +02:00
#+PROPERTY: header-args :exports both :output-dir results :session xs :kernel python3
2020-03-27 15:43:13 +01:00
2020-03-27 13:39:00 +01:00
* Init
** Required Modules
#+NAME: e988e3f2-ad1f-49a3-ad60-bedba3863283
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :tangle tangled/xs.py
2020-03-27 19:34:22 +01:00
import numpy as np
import matplotlib.pyplot as plt
2020-03-31 15:19:51 +02:00
import monte_carlo
2020-03-27 19:34:22 +01:00
#+end_src
2020-03-27 13:39:00 +01:00
#+RESULTS: e988e3f2-ad1f-49a3-ad60-bedba3863283
** Utilities
#+NAME: 53548778-a4c1-461a-9b1f-0f401df12b08
2020-03-31 15:35:03 +02:00
#+BEGIN_SRC jupyter-python :exports both
2020-03-27 13:39:00 +01:00
%run ../utility.py
%load_ext autoreload
%aimport monte_carlo
2020-03-31 15:19:51 +02:00
%autoreload 1
2020-03-27 13:39:00 +01:00
#+END_SRC
#+RESULTS: 53548778-a4c1-461a-9b1f-0f401df12b08
2020-04-01 13:00:18 +02:00
: The autoreload extension is already loaded. To reload it, use:
: %reload_ext autoreload
2020-03-27 13:39:00 +01:00
2020-03-30 15:43:55 +02:00
* Implementation
2020-03-27 13:39:00 +01:00
#+NAME: 777a013b-6c20-44bd-b58b-6a7690c21c0e
2020-03-31 15:35:03 +02:00
#+BEGIN_SRC jupyter-python :exports both :results raw drawer :exports code :tangle tangled/xs.py
2020-03-27 13:39:00 +01:00
"""
Implementation of the analytical cross section for q q_bar ->
gamma gamma
Author: Valentin Boettcher <hiro@protagon.space>
"""
import numpy as np
# NOTE: a more elegant solution would be a decorator
def energy_factor(charge, esp):
"""
Calculates the factor common to all other values in this module
Arguments:
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
2020-04-01 13:55:22 +02:00
return charge**4*/(137.036*esp)**2/6
2020-03-27 13:39:00 +01:00
2020-03-28 11:43:21 +01:00
def diff_xs(θ, charge, esp):
2020-03-27 13:39:00 +01:00
"""
Calculates the differential cross section as a function of the
2020-03-30 15:43:55 +02:00
azimuth angle θ in units of 1/GeV².
2020-03-27 13:39:00 +01:00
2020-04-01 12:14:35 +02:00
Here dΩ=sinθdθdφ
2020-03-27 13:39:00 +01:00
Arguments:
2020-03-28 11:43:21 +01:00
θ -- azimuth angle
2020-03-27 13:39:00 +01:00
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
return f*((np.cos(θ)**2+1)/np.sin(θ)**2)
2020-03-27 13:39:00 +01:00
2020-03-30 19:56:02 +02:00
def diff_xs_cosθ(cosθ, charge, esp):
"""
Calculates the differential cross section as a function of the
cosine of the azimuth angle θ in units of 1/GeV².
2020-04-01 12:14:35 +02:00
Here dΩ=d(cosθ)dφ
2020-03-30 19:56:02 +02:00
Arguments:
2020-03-30 20:26:10 +02:00
cosθ -- cosine of the azimuth angle
2020-03-30 19:56:02 +02:00
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
return f*((cosθ**2+1)/(1-cosθ**2))
def diff_xs_eta(η, charge, esp):
2020-03-27 13:39:00 +01:00
"""
Calculates the differential cross section as a function of the
pseudo rapidity of the photons in units of 1/GeV^2.
2020-04-01 12:14:35 +02:00
This is actually the crossection dσ/(dφdη).
2020-03-30 20:26:10 +02:00
Arguments:
2020-04-01 12:14:35 +02:00
η -- pseudo rapidity
2020-03-30 20:26:10 +02:00
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
2020-04-01 12:14:35 +02:00
return f*(2*np.cosh(η)**2 - 1)*2*np.exp(-η)/np.cosh(η)**2
2020-03-30 20:26:10 +02:00
def total_xs_eta(η, charge, esp):
2020-03-27 13:39:00 +01:00
"""
Calculates the total cross section as a function of the pseudo
rapidity of the photons in units of 1/GeV^2. If the rapditiy is
specified as a tuple, it is interpreted as an interval. Otherwise
2020-03-28 11:43:21 +01:00
the interval [-η, η] will be used.
2020-03-27 13:39:00 +01:00
Arguments:
2020-03-28 11:43:21 +01:00
η -- pseudo rapidity (tuple or number)
2020-03-27 13:39:00 +01:00
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementar charge
"""
f = energy_factor(charge, esp)
2020-03-28 11:43:21 +01:00
if not isinstance(η, tuple):
η = (-η, η)
2020-03-27 13:39:00 +01:00
2020-03-28 11:43:21 +01:00
if len(η) != 2:
raise ValueError('Invalid η cut.')
2020-03-27 13:39:00 +01:00
def F(x):
return np.tanh(x) - 2*x
2020-03-28 11:43:21 +01:00
return 2*np.pi*f*(F(η[0]) - F(η[1]))
2020-03-27 13:39:00 +01:00
#+END_SRC
#+RESULTS: 777a013b-6c20-44bd-b58b-6a7690c21c0e
2020-04-01 13:55:22 +02:00
:RESULTS:
# [goto error]
: File "<ipython-input-39-3fe28bd90183>", line 20
: return charge**4*/(137.036*esp)**2/6
: ^
: SyntaxError: invalid syntax
:END:
2020-03-27 13:39:00 +01:00
* Calculations
** XS qq -> gamma gamma
First, set up the input parameters.
#+NAME: 7e62918a-2935-41ac-94e0-f0e7c3af8e0d
2020-03-31 15:35:03 +02:00
#+BEGIN_SRC jupyter-python :exports both :results raw drawer
2020-03-28 11:43:21 +01:00
η = 2.5
2020-03-27 13:39:00 +01:00
charge = 1/3
esp = 200 # GeV
#+END_SRC
2020-03-31 16:40:10 +02:00
#+RESULTS: 7e62918a-2935-41ac-94e0-f0e7c3af8e0d
2020-03-31 12:16:57 +02:00
Set up the integration and plot intervals.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-03-31 12:16:57 +02:00
interval_η = [-η, η]
interval = η_to_θ([-η, η])
interval_cosθ = np.cos(interval)
interval_pt = η_to_pt([0, η], esp/2)
plot_interval = [0.1, np.pi-.1]
#+end_src
2020-03-31 15:19:51 +02:00
#+RESULTS:
*** Analytical Integratin
2020-03-27 13:39:00 +01:00
And now calculate the cross section in picobarn.
#+NAME: cf853fb6-d338-482e-bc55-bd9f8e796495
2020-03-31 16:40:10 +02:00
#+BEGIN_SRC jupyter-python :exports both :results raw file :file xs.tex
2020-03-30 15:43:55 +02:00
xs_gev = total_xs_eta(η, charge, esp)
2020-03-28 11:43:21 +01:00
xs_pb = gev_to_pb(xs_gev)
2020-04-01 13:55:22 +02:00
tex_value(xs_pb, unit=r'\pico\barn', prefix=r'\sigma = ', prec=6, save=('results', 'xs.tex'))
2020-03-27 13:39:00 +01:00
#+END_SRC
#+RESULTS: cf853fb6-d338-482e-bc55-bd9f8e796495
2020-04-01 13:55:22 +02:00
: \(\sigma = \SI{0.053793}{\pico\barn}\)
2020-03-27 14:30:55 +01:00
2020-03-27 15:43:13 +01:00
Compared to sherpa, it's pretty close.
2020-03-27 14:30:55 +01:00
#+NAME: 81b5ed93-0312-45dc-beec-e2ba92e22626
2020-03-31 15:35:03 +02:00
#+BEGIN_SRC jupyter-python :exports both :results raw drawer
2020-04-01 13:55:22 +02:00
sherpa = 0.05380
xs_pb - sherpa
2020-03-27 14:30:55 +01:00
#+END_SRC
#+RESULTS: 81b5ed93-0312-45dc-beec-e2ba92e22626
2020-04-01 13:55:22 +02:00
: -6.710540074485183e-06
2020-03-27 15:43:13 +01:00
I had to set the runcard option ~EW_SCHEME: alpha0~ to use the pure
QED coupling constant.
2020-03-31 12:16:57 +02:00
*** Numerical Integration
Plot our nice distribution:
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
plot_points = np.linspace(*plot_interval, 1000)
fig, ax = set_up_plot()
ax.plot(plot_points, gev_to_pb(diff_xs(plot_points, charge=charge, esp=esp)))
ax.set_xlabel(r'$\theta$')
ax.set_ylabel(r'$\frac{d\sigma}{d\Omega}$ [pb]')
ax.axvline(interval[0], color='gray', linestyle='--')
ax.axvline(interval[1], color='gray', linestyle='--', label=rf'$|\eta|={η}$')
ax.legend()
2020-04-01 13:00:18 +02:00
save_fig(fig, 'diff_xs', 'xs', size=[3, 3])
#+end_src
#+RESULTS:
2020-04-01 13:00:18 +02:00
:RESULTS:
: /usr/lib/python3.8/site-packages/tikzplotlib/_axes.py:211: MatplotlibDeprecationWarning: Passing the minor parameter of get_xticks() positionally is deprecated since Matplotlib 3.2; the parameter will become keyword-only two minor releases later.
: data, "minor x", obj.get_xticks("minor"), obj.get_xticklabels("minor")
: /usr/lib/python3.8/site-packages/tikzplotlib/_axes.py:216: MatplotlibDeprecationWarning: Passing the minor parameter of get_yticks() positionally is deprecated since Matplotlib 3.2; the parameter will become keyword-only two minor releases later.
: data, "minor y", obj.get_yticks("minor"), obj.get_yticklabels("minor")
[[file:./.ob-jupyter/84554de6897392b423848ccff74c3b1bdbbac799.png]]
:END:
Define the integrand.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
def xs_pb_int(θ):
2020-04-01 13:55:22 +02:00
return 2*np.pi*gev_to_pb(np.sin(θ)*diff_xs(θ, charge=charge, esp=esp))
#+end_src
#+RESULTS:
Plot the integrand. # TODO: remove duplication
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
fig, ax = set_up_plot()
ax.plot(plot_points, xs_pb_int(plot_points))
ax.set_xlabel(r'$\theta$')
ax.set_ylabel(r'$\sin(\theta)\cdot\frac{d\sigma}{d\theta}$ [pb]')
ax.axvline(interval[0], color='gray', linestyle='--')
ax.axvline(interval[1], color='gray', linestyle='--', label=rf'$|\eta|={η}$')
ax.legend()
save_fig(fig, 'xs_integrand', 'xs', size=[4, 4])
#+end_src
#+RESULTS:
2020-04-01 13:55:22 +02:00
[[file:./.ob-jupyter/9e547bdeaa79bb956057b552090b4ab6305a20e6.png]]
Intergrate σ with the mc method.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-03-31 15:19:51 +02:00
xs_pb_mc, xs_pb_mc_err = monte_carlo.integrate(xs_pb_int, interval, 10000)
2020-04-01 13:55:22 +02:00
xs_pb_mc = xs_pb_mc
xs_pb_mc, xs_pb_mc_err
#+end_src
#+RESULTS:
2020-04-01 13:55:22 +02:00
| 0.053599995094203025 | 0.0002656256326580591 |
2020-03-31 15:19:51 +02:00
We gonna export that as tex.
2020-03-31 16:40:10 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-01 13:55:22 +02:00
tex_value(xs_pb_mc, unit=r'\pico\barn', prefix=r'\sigma = ', err=xs_pb_mc_err, save=('results', 'xs_mc.tex'))
#+end_src
#+RESULTS:
2020-04-01 13:55:22 +02:00
: \(\sigma = \SI{0.05360\pm 0.00027}{\pico\barn}\)
2020-03-31 12:16:57 +02:00
*** Sampling and Analysis
2020-03-31 15:19:51 +02:00
Define the sample number.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-03-31 15:19:51 +02:00
sample_num = 1000
#+end_src
#+RESULTS:
Let's define a shortcut for our distribution.
#+begin_src jupyter-python :exports both :results raw drawer
def dist(x):
return gev_to_pb(diff_xs_cosθ(x, charge, esp))*2*np.pi
#+end_src
#+RESULTS:
Now we monte-carlo sample our distribution. We observe that the efficiency his very bad!
#+begin_src jupyter-python :exports both :results raw drawer
cosθ_sample, cosθ_efficiency = \
monte_carlo.sample_unweighted_array(sample_num, dist,
interval_cosθ, report_efficiency=True)
cosθ_efficiency
#+end_src
#+RESULTS:
2020-04-01 12:14:35 +02:00
: 0.026054076452916193
Our distribution has a lot of variance, as can be seen by plotting it.
#+begin_src jupyter-python :exports both :results raw drawer
pts = np.linspace(*interval_cosθ, 100)
fig, ax = set_up_plot()
ax.plot(pts, dist(pts), label=r'$\frac{d\sigma}{d\Omega}$')
#+end_src
#+RESULTS:
:RESULTS:
2020-04-01 12:14:35 +02:00
| <matplotlib.lines.Line2D | at | 0x7f3dc1880fd0> |
[[file:./.ob-jupyter/04d0c9300d134c04b087aef7bb0a1b6036038b64.png]]
:END:
We define a friendly and easy to integrate upper limit function.
#+begin_src jupyter-python :exports both :results raw drawer
upper_limit = dist(interval_cosθ[0]) \
/interval_cosθ[0]**2
upper_base = dist(0)
def upper(x):
return upper_base + upper_limit*x**2
def upper_int(x):
return upper_base*x + upper_limit*x**3/3
ax.plot(pts, upper(pts), label='Upper bound')
ax.legend()
ax.set_xlabel(r'$\cos\theta$')
ax.set_ylabel(r'$\frac{d\sigma}{d\Omega}$')
save_fig(fig, 'upper_bound', 'xs_sampling', size=(4, 4))
fig
#+end_src
#+RESULTS:
[[file:./.ob-jupyter/1a720f93049e88987bdddac861b1c3847501e271.png]]
2020-03-30 20:26:10 +02:00
To increase our efficiency, we have to specify an upper bound. That is
at least a little bit better. The numeric inversion is horribly inefficent.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
cosθ_sample, cosθ_efficiency = \
monte_carlo.sample_unweighted_array(sample_num, dist,
interval_cosθ, report_efficiency=True,
upper_bound=[upper, upper_int])
cosθ_efficiency
2020-03-30 19:56:02 +02:00
#+end_src
#+RESULTS:
2020-04-01 12:14:35 +02:00
: 0.07947335025380711
2020-03-30 19:56:02 +02:00
Nice! And now draw some histograms.
We define an auxilliary method for convenience.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-03-30 19:56:02 +02:00
def draw_histo(points, xlabel, bins=20):
fig, ax = set_up_plot()
ax.hist(points, bins, histtype='step')
ax.set_xlabel(xlabel)
ax.set_xlim([points.min(), points.max()])
return fig, ax
#+end_src
2020-03-30 19:56:02 +02:00
#+RESULTS:
The histogram for cosθ.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-03-30 19:56:02 +02:00
fig, _ = draw_histo(cosθ_sample, r'$\cos\theta$')
2020-03-31 15:19:51 +02:00
save_fig(fig, 'histo_cos_theta', 'xs', size=(4,3))
#+end_src
#+RESULTS:
2020-04-01 12:14:35 +02:00
[[file:./.ob-jupyter/d473cf9d22d8fe203293e6d17a92497aad3109d3.png]]
2020-03-31 15:19:51 +02:00
Now we define some utilities to draw real 4-impulse samples.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :tangle tangled/xs.py
2020-03-31 15:19:51 +02:00
def sample_impulses(sample_num, interval, charge, esp, seed=None):
"""Samples `sample_num` unweighted photon 4-impulses from the cross-section.
:param sample_num: number of samples to take
:param interval: cosθ interval to sample from
:param charge: the charge of the quark
:param esp: center of mass energy
:param seed: the seed for the rng, optional, default is system
time
:returns: an array of 4 photon impulses
:rtype: np.ndarray
"""
cosθ_sample = \
monte_carlo.sample_unweighted_array(sample_num,
lambda x:
diff_xs_cosθ(x, charge, esp),
interval_cosθ)
φ_sample = np.random.uniform(0, 1, sample_num)
def make_impulse(esp, cosθ, φ):
sinθ = np.sqrt(1-cosθ**2)
return np.array([1, sinθ*np.cos(φ), sinθ*np.sin(φ), cosθ])*esp/2
impulses = np.array([make_impulse(esp, cosθ, φ) \
for cosθ, φ in np.array([cosθ_sample, φ_sample]).T])
return impulses
#+end_src
#+RESULTS:
2020-03-31 15:35:03 +02:00
To generate histograms of other obeservables, we have to define them
as functions on 4-impuleses. Using those to transform samples is
analogous to transforming the distribution itself.
#+begin_src jupyter-python :exports both :results raw drawer :tangle tangled/observables.py
2020-03-31 15:19:51 +02:00
"""This module defines some observables on arrays of 4-pulses."""
import numpy as np
def p_t(p):
"""Transverse impulse
:param p: array of 4-impulses
"""
return np.linalg.norm(p[:,1:3], axis=1)
def η(p):
"""Pseudo rapidity.
:param p: array of 4-impulses
"""
return np.arccosh(np.linalg.norm(p[:,1:], axis=1)/p_t(p))*np.sign(p[:, 3])
2020-03-30 19:56:02 +02:00
#+end_src
#+RESULTS:
2020-03-31 15:19:51 +02:00
Lets try it out.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-03-31 15:19:51 +02:00
impulse_sample = sample_impulses(2000, interval_cosθ, charge, esp)
impulse_sample
2020-03-30 19:56:02 +02:00
#+end_src
#+RESULTS:
2020-04-01 12:14:35 +02:00
: array([[100. , 16.36721437, 5.49983339, 98.49805138],
: [100. , 58.57273425, 71.41789832, -38.32386465],
: [100. , 73.44354101, 23.28263462, -63.74923693],
2020-03-31 15:35:03 +02:00
: ...,
2020-04-01 12:14:35 +02:00
: [100. , 86.35169559, 12.11748171, 48.95458411],
: [100. , 58.83596982, 7.2563454 , -80.53368306],
: [100. , 55.49634462, 66.91946554, -49.41599807]])
2020-03-30 20:26:10 +02:00
2020-03-31 15:19:51 +02:00
Now let's make a histogram of the η distribution.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-03-31 15:19:51 +02:00
η_sample = η(impulse_sample)
draw_histo(η_sample, r'$\eta$')
#+end_src
#+RESULTS:
:RESULTS:
2020-04-01 12:14:35 +02:00
| <Figure | size | 432x288 | with | 1 | Axes> | <matplotlib.axes._subplots.AxesSubplot | at | 0x7f3dc20caf10> |
[[file:./.ob-jupyter/70b0373104835c034a1444836807c357c2f8aacb.png]]
2020-03-31 15:19:51 +02:00
:END:
And the same for the p_t (transverse impulse) distribution.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-03-31 15:19:51 +02:00
p_t_sample = p_t(impulse_sample)
2020-03-31 19:09:28 +02:00
draw_histo(p_t_sample, r'$p_T$ [GeV]')
2020-03-30 20:26:10 +02:00
#+end_src
#+RESULTS:
:RESULTS:
2020-04-01 12:14:35 +02:00
| <Figure | size | 432x288 | with | 1 | Axes> | <matplotlib.axes._subplots.AxesSubplot | at | 0x7f3dc17120a0> |
[[file:./.ob-jupyter/0329079132169b82385536d1b707f5fe884f70aa.png]]
2020-03-30 19:56:02 +02:00
:END: