bachelor_thesis/prog/python/qqgg/analytical_xs.org

577 lines
17 KiB
Org Mode
Raw Normal View History

2020-03-31 15:35:03 +02:00
#+PROPERTY: header-args :exports both :output-dir results :session xs :kernel python3
2020-03-27 15:43:13 +01:00
2020-03-27 13:39:00 +01:00
* Init
** Required Modules
#+NAME: e988e3f2-ad1f-49a3-ad60-bedba3863283
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :tangle tangled/xs.py
2020-03-27 19:34:22 +01:00
import numpy as np
import matplotlib.pyplot as plt
2020-03-31 15:19:51 +02:00
import monte_carlo
2020-03-27 19:34:22 +01:00
#+end_src
2020-03-27 13:39:00 +01:00
#+RESULTS: e988e3f2-ad1f-49a3-ad60-bedba3863283
** Utilities
#+NAME: 53548778-a4c1-461a-9b1f-0f401df12b08
2020-03-31 15:35:03 +02:00
#+BEGIN_SRC jupyter-python :exports both
2020-03-27 13:39:00 +01:00
%run ../utility.py
%load_ext autoreload
%aimport monte_carlo
2020-03-31 15:19:51 +02:00
%autoreload 1
2020-03-27 13:39:00 +01:00
#+END_SRC
#+RESULTS: 53548778-a4c1-461a-9b1f-0f401df12b08
2020-04-02 09:05:21 +02:00
: The autoreload extension is already loaded. To reload it, use:
: %reload_ext autoreload
2020-03-27 13:39:00 +01:00
2020-03-30 15:43:55 +02:00
* Implementation
2020-03-27 13:39:00 +01:00
#+NAME: 777a013b-6c20-44bd-b58b-6a7690c21c0e
2020-03-31 15:35:03 +02:00
#+BEGIN_SRC jupyter-python :exports both :results raw drawer :exports code :tangle tangled/xs.py
2020-03-27 13:39:00 +01:00
"""
Implementation of the analytical cross section for q q_bar ->
gamma gamma
Author: Valentin Boettcher <hiro@protagon.space>
"""
import numpy as np
# NOTE: a more elegant solution would be a decorator
def energy_factor(charge, esp):
"""
Calculates the factor common to all other values in this module
Arguments:
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
2020-04-01 15:03:38 +02:00
return charge**4/(137.036*esp)**2/6
2020-03-27 13:39:00 +01:00
2020-03-28 11:43:21 +01:00
def diff_xs(θ, charge, esp):
2020-03-27 13:39:00 +01:00
"""
Calculates the differential cross section as a function of the
2020-03-30 15:43:55 +02:00
azimuth angle θ in units of 1/GeV².
2020-03-27 13:39:00 +01:00
2020-04-01 12:14:35 +02:00
Here dΩ=sinθdθdφ
2020-03-27 13:39:00 +01:00
Arguments:
2020-03-28 11:43:21 +01:00
θ -- azimuth angle
2020-03-27 13:39:00 +01:00
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
return f*((np.cos(θ)**2+1)/np.sin(θ)**2)
2020-03-27 13:39:00 +01:00
2020-03-30 19:56:02 +02:00
def diff_xs_cosθ(cosθ, charge, esp):
"""
Calculates the differential cross section as a function of the
cosine of the azimuth angle θ in units of 1/GeV².
2020-04-01 12:14:35 +02:00
Here dΩ=d(cosθ)dφ
2020-03-30 19:56:02 +02:00
Arguments:
2020-03-30 20:26:10 +02:00
cosθ -- cosine of the azimuth angle
2020-03-30 19:56:02 +02:00
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
return f*((cosθ**2+1)/(1-cosθ**2))
2020-04-02 15:55:07 +02:00
def diff_xs_eta(η, charge, esp):
2020-03-27 13:39:00 +01:00
"""
Calculates the differential cross section as a function of the
pseudo rapidity of the photons in units of 1/GeV^2.
2020-04-01 12:14:35 +02:00
This is actually the crossection dσ/(dφdη).
2020-03-30 20:26:10 +02:00
Arguments:
2020-04-01 12:14:35 +02:00
η -- pseudo rapidity
2020-03-30 20:26:10 +02:00
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
2020-04-02 09:05:21 +02:00
return f*(np.tanh(η)**2 + 1)
2020-03-30 20:26:10 +02:00
2020-04-02 15:55:07 +02:00
def diff_xs_p_t(p_t, charge, esp):
"""
Calculates the differential cross section as a function of the
transverse momentum (p_t) of the photons in units of 1/GeV^2.
This is actually the crossection dσ/(dφdp_t).
Arguments:
p_t -- transverse momentum in GeV
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementary charge
"""
f = energy_factor(charge, esp)
sqrt_fact = np.sqrt(1-(2*p_t/esp)**2)
return f/p_t*(1/sqrt_fact + sqrt_fact)
def total_xs_eta(η, charge, esp):
2020-03-27 13:39:00 +01:00
"""
Calculates the total cross section as a function of the pseudo
rapidity of the photons in units of 1/GeV^2. If the rapditiy is
specified as a tuple, it is interpreted as an interval. Otherwise
2020-03-28 11:43:21 +01:00
the interval [-η, η] will be used.
2020-03-27 13:39:00 +01:00
Arguments:
2020-03-28 11:43:21 +01:00
η -- pseudo rapidity (tuple or number)
2020-03-27 13:39:00 +01:00
esp -- center of momentum energy in GeV
charge -- charge of the particle in units of the elementar charge
"""
f = energy_factor(charge, esp)
2020-03-28 11:43:21 +01:00
if not isinstance(η, tuple):
η = (-η, η)
2020-03-27 13:39:00 +01:00
2020-03-28 11:43:21 +01:00
if len(η) != 2:
raise ValueError('Invalid η cut.')
2020-03-27 13:39:00 +01:00
def F(x):
return np.tanh(x) - 2*x
2020-03-28 11:43:21 +01:00
return 2*np.pi*f*(F(η[0]) - F(η[1]))
2020-03-27 13:39:00 +01:00
#+END_SRC
#+RESULTS: 777a013b-6c20-44bd-b58b-6a7690c21c0e
* Calculations
** XS qq -> gamma gamma
First, set up the input parameters.
2020-03-31 15:35:03 +02:00
#+BEGIN_SRC jupyter-python :exports both :results raw drawer
2020-03-28 11:43:21 +01:00
η = 2.5
2020-03-27 13:39:00 +01:00
charge = 1/3
esp = 200 # GeV
#+END_SRC
#+RESULTS:
2020-03-31 16:40:10 +02:00
2020-03-31 12:16:57 +02:00
Set up the integration and plot intervals.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-03-31 12:16:57 +02:00
interval_η = [-η, η]
interval = η_to_θ([-η, η])
interval_cosθ = np.cos(interval)
2020-04-02 15:55:07 +02:00
interval_pt = np.sort(η_to_pt([0, η], esp/2))
2020-03-31 12:16:57 +02:00
plot_interval = [0.1, np.pi-.1]
#+end_src
2020-03-31 15:19:51 +02:00
#+RESULTS:
2020-04-02 15:55:07 +02:00
*** Analytical Integration
2020-03-27 13:39:00 +01:00
And now calculate the cross section in picobarn.
2020-03-31 16:40:10 +02:00
#+BEGIN_SRC jupyter-python :exports both :results raw file :file xs.tex
2020-03-30 15:43:55 +02:00
xs_gev = total_xs_eta(η, charge, esp)
2020-03-28 11:43:21 +01:00
xs_pb = gev_to_pb(xs_gev)
2020-04-03 14:05:30 +02:00
tex_value(xs_pb, unit=r'\pico\barn', prefix=r'\sigma = ',
prec=6, save=('results', 'xs.tex'))
2020-03-27 13:39:00 +01:00
#+END_SRC
2020-04-01 15:03:38 +02:00
#+RESULTS:
2020-04-01 13:55:22 +02:00
: \(\sigma = \SI{0.053793}{\pico\barn}\)
2020-03-27 14:30:55 +01:00
2020-04-01 15:03:38 +02:00
Lets plot the total xs as a function of η.
#+begin_src jupyter-python :exports both :results raw drawer
fig, ax = set_up_plot()
η_s = np.linspace(0, 3, 1000)
ax.plot(η_s, gev_to_pb(total_xs_eta(η_s, charge, esp)))
ax.set_xlabel(r'$\eta$')
ax.set_ylabel(r'$\sigma$ [pb]')
ax.set_xlim([0, max(η_s)])
ax.set_ylim(0)
save_fig(fig, 'total_xs', 'xs', size=[2.5, 2])
#+end_src
#+RESULTS:
[[file:./.ob-jupyter/b709b22e5727fe27a94a18f9d31d40567f035376.png]]
2020-03-27 15:43:13 +01:00
Compared to sherpa, it's pretty close.
2020-03-27 14:30:55 +01:00
#+NAME: 81b5ed93-0312-45dc-beec-e2ba92e22626
2020-03-31 15:35:03 +02:00
#+BEGIN_SRC jupyter-python :exports both :results raw drawer
2020-04-01 13:55:22 +02:00
sherpa = 0.05380
xs_pb - sherpa
2020-03-27 14:30:55 +01:00
#+END_SRC
#+RESULTS: 81b5ed93-0312-45dc-beec-e2ba92e22626
2020-04-01 15:03:38 +02:00
: -6.7112594623469635e-06
2020-03-27 15:43:13 +01:00
I had to set the runcard option ~EW_SCHEME: alpha0~ to use the pure
QED coupling constant.
*** Numerical Integration
Plot our nice distribution:
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
plot_points = np.linspace(*plot_interval, 1000)
fig, ax = set_up_plot()
ax.plot(plot_points, gev_to_pb(diff_xs(plot_points, charge=charge, esp=esp)))
ax.set_xlabel(r'$\theta$')
2020-04-01 15:03:38 +02:00
ax.set_ylabel(r'$d\sigma/d\Omega$ [pb]')
ax.axvline(interval[0], color='gray', linestyle='--')
ax.axvline(interval[1], color='gray', linestyle='--', label=rf'$|\eta|={η}$')
ax.legend()
2020-04-01 15:03:38 +02:00
save_fig(fig, 'diff_xs', 'xs', size=[2.5, 2])
#+end_src
#+RESULTS:
2020-04-01 15:03:38 +02:00
[[file:./.ob-jupyter/aa1aab15903411e94de8fd1d6f9b8c1de0e95b67.png]]
Define the integrand.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
def xs_pb_int(θ):
2020-04-01 13:55:22 +02:00
return 2*np.pi*gev_to_pb(np.sin(θ)*diff_xs(θ, charge=charge, esp=esp))
def xs_pb_int_η(η):
return 2*np.pi*gev_to_pb(diff_xs_eta(η, charge, esp))
#+end_src
#+RESULTS:
Plot the integrand. # TODO: remove duplication
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
fig, ax = set_up_plot()
ax.plot(plot_points, xs_pb_int(plot_points))
ax.set_xlabel(r'$\theta$')
ax.set_ylabel(r'$\sin(\theta)\cdot\frac{d\sigma}{d\Omega}$ [pb]')
ax.axvline(interval[0], color='gray', linestyle='--')
ax.axvline(interval[1], color='gray', linestyle='--', label=rf'$|\eta|={η}$')
ax.legend()
save_fig(fig, 'xs_integrand', 'xs', size=[4, 4])
#+end_src
#+RESULTS:
2020-04-02 11:31:44 +02:00
[[file:./.ob-jupyter/a84ac9746f0f4b0c2f1038dc249e557fc1fe48f5.png]]
Intergrate σ with the mc method.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-02 09:05:21 +02:00
xs_pb_mc, xs_pb_mc_err = monte_carlo.integrate(xs_pb_int, interval, 1000)
2020-04-01 13:55:22 +02:00
xs_pb_mc = xs_pb_mc
xs_pb_mc, xs_pb_mc_err
#+end_src
#+RESULTS:
2020-04-03 14:05:30 +02:00
| 0.055441221086831506 | 0.0008656474309226884 |
2020-03-31 15:19:51 +02:00
We gonna export that as tex.
2020-03-31 16:40:10 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-01 13:55:22 +02:00
tex_value(xs_pb_mc, unit=r'\pico\barn', prefix=r'\sigma = ', err=xs_pb_mc_err, save=('results', 'xs_mc.tex'))
#+end_src
#+RESULTS:
2020-04-03 14:05:30 +02:00
: \(\sigma = \SI{0.0554\pm 0.0009}{\pico\barn}\)
2020-04-02 09:05:21 +02:00
Plot the intgrand of the pseudo rap.
#+begin_src jupyter-python :exports both :results raw drawer
fig, ax = set_up_plot()
points = np.linspace(*interval_η, 1000)
ax.plot(points, xs_pb_int_η(points))
ax.set_xlabel(r'$\eta$')
ax.set_ylabel(r'$\frac{d\sigma}{d\theta}$ [pb]')
save_fig(fig, 'xs_integrand_η', 'xs', size=[4, 4])
#+end_src
#+RESULTS:
[[file:./.ob-jupyter/09de667c0ccb1d17fef74918e3f462a1340df113.png]]
2020-04-02 09:05:21 +02:00
As we see, the result is much better if we use pseudo rapidity,
because the differential cross section does not difverge anymore.
#+begin_src jupyter-python :exports both :results raw drawer
xs_pb_η = monte_carlo.integrate(xs_pb_int_η,
2020-04-02 15:55:07 +02:00
interval_η, 1000)
2020-04-02 09:05:21 +02:00
xs_pb_η
#+end_src
#+RESULTS:
2020-04-03 14:05:30 +02:00
| 0.05367271529012346 | 0.00015819977327237987 |
2020-04-02 09:05:21 +02:00
And yet again export that as tex.
#+begin_src jupyter-python :exports both :results raw drawer
tex_value(*xs_pb_η, unit=r'\pico\barn', prefix=r'\sigma = ', save=('results', 'xs_mc_eta.tex'))
#+end_src
#+RESULTS:
2020-04-03 14:05:30 +02:00
: \(\sigma = \SI{0.05367\pm 0.00016}{\pico\barn}\)
2020-04-02 09:05:21 +02:00
Let's battle test the statistics.
#+begin_src jupyter-python :exports both :results raw drawer
num_runs = 1000
num_within = 0
for _ in range(num_runs):
val, err = monte_carlo.integrate(xs_pb_int_η, interval_η, 1000)
if abs(xs_pb - val) <= err:
num_within += 1
num_within/num_runs
#+end_src
#+RESULTS:
2020-04-03 14:05:30 +02:00
: 0.674
So we see: the standard deviation is sound.
2020-03-31 12:16:57 +02:00
*** Sampling and Analysis
2020-03-31 15:19:51 +02:00
Define the sample number.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-03-31 15:19:51 +02:00
sample_num = 1000
#+end_src
#+RESULTS:
2020-04-02 15:55:07 +02:00
Let's define shortcuts for our distributions. The 2π are just there
for formal correctnes. Factors do not influecence the outcome.
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-02 15:55:07 +02:00
def dist_θ(x):
return gev_to_pb(diff_xs_cosθ(x, charge, esp))*2*np.pi
2020-04-02 15:55:07 +02:00
def dist_η(x):
return gev_to_pb(diff_xs_eta(x, charge, esp))*2*np.pi
#+end_src
#+RESULTS:
2020-04-02 15:55:07 +02:00
**** Sampling the cosθ cross section
Now we monte-carlo sample our distribution. We observe that the efficiency his very bad!
#+begin_src jupyter-python :exports both :results raw drawer
cosθ_sample, cosθ_efficiency = \
2020-04-02 15:55:07 +02:00
monte_carlo.sample_unweighted_array(sample_num, dist_θ,
interval_cosθ, report_efficiency=True)
cosθ_efficiency
#+end_src
#+RESULTS:
2020-04-03 14:05:30 +02:00
: 0.02705475753321093
Our distribution has a lot of variance, as can be seen by plotting it.
#+begin_src jupyter-python :exports both :results raw drawer
pts = np.linspace(*interval_cosθ, 100)
fig, ax = set_up_plot()
2020-04-02 15:55:07 +02:00
ax.plot(pts, dist_θ(pts), label=r'$\frac{d\sigma}{d\Omega}$')
#+end_src
#+RESULTS:
2020-04-03 14:05:30 +02:00
:RESULTS:
| <matplotlib.lines.Line2D | at | 0x7ff6f9e629d0> |
[[file:./.ob-jupyter/04d0c9300d134c04b087aef7bb0a1b6036038b64.png]]
2020-04-03 14:05:30 +02:00
:END:
We define a friendly and easy to integrate upper limit function.
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-02 15:55:07 +02:00
upper_limit = dist_θ(interval_cosθ[0]) \
/interval_cosθ[0]**2
2020-04-02 15:55:07 +02:00
upper_base = dist_θ(0)
def upper(x):
return upper_base + upper_limit*x**2
def upper_int(x):
return upper_base*x + upper_limit*x**3/3
ax.plot(pts, upper(pts), label='Upper bound')
ax.legend()
ax.set_xlabel(r'$\cos\theta$')
ax.set_ylabel(r'$\frac{d\sigma}{d\Omega}$')
save_fig(fig, 'upper_bound', 'xs_sampling', size=(4, 4))
fig
#+end_src
#+RESULTS:
[[file:./.ob-jupyter/1a720f93049e88987bdddac861b1c3847501e271.png]]
2020-03-30 20:26:10 +02:00
To increase our efficiency, we have to specify an upper bound. That is
at least a little bit better. The numeric inversion is horribly inefficent.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
cosθ_sample, cosθ_efficiency = \
2020-04-02 15:55:07 +02:00
monte_carlo.sample_unweighted_array(sample_num, dist_θ,
interval_cosθ, report_efficiency=True,
upper_bound=[upper, upper_int])
cosθ_efficiency
2020-03-30 19:56:02 +02:00
#+end_src
#+RESULTS:
2020-04-03 14:05:30 +02:00
: 0.07775726811259806
2020-03-30 19:56:02 +02:00
Nice! And now draw some histograms.
We define an auxilliary method for convenience.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-03-30 19:56:02 +02:00
def draw_histo(points, xlabel, bins=20):
2020-04-02 16:33:30 +02:00
heights, edges = np.histogram(points, bins)
centers = (edges[1:] + edges[:-1])/2
deviations = np.sqrt(heights)
2020-03-30 19:56:02 +02:00
fig, ax = set_up_plot()
2020-04-02 16:33:30 +02:00
ax.errorbar(centers, heights, deviations, linestyle='none', color='orange')
ax.step(edges, [heights[0], *heights], color='#1f77b4')
2020-03-30 19:56:02 +02:00
ax.set_xlabel(xlabel)
ax.set_xlim([points.min(), points.max()])
return fig, ax
#+end_src
2020-03-30 19:56:02 +02:00
#+RESULTS:
The histogram for cosθ.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-03-30 19:56:02 +02:00
fig, _ = draw_histo(cosθ_sample, r'$\cos\theta$')
2020-03-31 15:19:51 +02:00
save_fig(fig, 'histo_cos_theta', 'xs', size=(4,3))
#+end_src
#+RESULTS:
2020-04-03 14:05:30 +02:00
[[file:./.ob-jupyter/62a29c0e9910c0c3a52db2d94943811f956af818.png]]
2020-03-31 15:19:51 +02:00
2020-04-02 16:33:30 +02:00
**** Observables
2020-04-02 15:55:07 +02:00
Now we define some utilities to draw real 4-momentum samples.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :tangle tangled/xs.py
2020-04-02 16:35:43 +02:00
def sample_momenta(sample_num, interval, charge, esp, seed=None):
"""Samples `sample_num` unweighted photon 4-momenta from the
2020-04-02 16:33:30 +02:00
cross-section.
2020-03-31 15:19:51 +02:00
:param sample_num: number of samples to take
:param interval: cosθ interval to sample from
:param charge: the charge of the quark
:param esp: center of mass energy
:param seed: the seed for the rng, optional, default is system
time
2020-04-02 16:35:43 +02:00
:returns: an array of 4 photon momenta
2020-04-02 16:33:30 +02:00
2020-03-31 15:19:51 +02:00
:rtype: np.ndarray
"""
cosθ_sample = \
monte_carlo.sample_unweighted_array(sample_num,
lambda x:
diff_xs_cosθ(x, charge, esp),
interval_cosθ)
φ_sample = np.random.uniform(0, 1, sample_num)
2020-04-02 15:55:07 +02:00
def make_momentum(esp, cosθ, φ):
2020-03-31 15:19:51 +02:00
sinθ = np.sqrt(1-cosθ**2)
return np.array([1, sinθ*np.cos(φ), sinθ*np.sin(φ), cosθ])*esp/2
2020-04-02 16:35:43 +02:00
momenta = np.array([make_momentum(esp, cosθ, φ) \
2020-03-31 15:19:51 +02:00
for cosθ, φ in np.array([cosθ_sample, φ_sample]).T])
2020-04-02 16:35:43 +02:00
return momenta
2020-03-31 15:19:51 +02:00
#+end_src
#+RESULTS:
2020-03-31 15:35:03 +02:00
To generate histograms of other obeservables, we have to define them
as functions on 4-impuleses. Using those to transform samples is
analogous to transforming the distribution itself.
#+begin_src jupyter-python :exports both :results raw drawer :tangle tangled/observables.py
2020-03-31 15:19:51 +02:00
"""This module defines some observables on arrays of 4-pulses."""
import numpy as np
def p_t(p):
2020-04-02 15:55:07 +02:00
"""Transverse momentum
2020-03-31 15:19:51 +02:00
2020-04-02 16:35:43 +02:00
:param p: array of 4-momenta
2020-03-31 15:19:51 +02:00
"""
return np.linalg.norm(p[:,1:3], axis=1)
def η(p):
"""Pseudo rapidity.
2020-04-02 16:35:43 +02:00
:param p: array of 4-momenta
2020-03-31 15:19:51 +02:00
"""
return np.arccosh(np.linalg.norm(p[:,1:], axis=1)/p_t(p))*np.sign(p[:, 3])
2020-03-30 19:56:02 +02:00
#+end_src
#+RESULTS:
2020-03-31 15:19:51 +02:00
Lets try it out.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-02 16:35:43 +02:00
momentum_sample = sample_momenta(2000, interval_cosθ, charge, esp)
2020-04-02 15:55:07 +02:00
momentum_sample
2020-03-30 19:56:02 +02:00
#+end_src
#+RESULTS:
2020-04-03 14:05:30 +02:00
: array([[100. , 47.18813066, 20.64234473, -85.71565743],
: [100. , 15.71929112, 11.95618298, -98.03037068],
: [100. , 74.89660507, 59.11115883, -29.9394297 ],
2020-03-31 15:35:03 +02:00
: ...,
2020-04-03 14:05:30 +02:00
: [100. , 19.29194247, 7.026877 , 97.86952516],
: [100. , 79.11073693, 55.29696215, 26.1483705 ],
: [100. , 26.68616492, 13.46194026, 95.42863704]])
2020-03-30 20:26:10 +02:00
2020-03-31 15:19:51 +02:00
Now let's make a histogram of the η distribution.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-02 15:55:07 +02:00
η_sample = η(momentum_sample)
2020-03-31 15:19:51 +02:00
draw_histo(η_sample, r'$\eta$')
#+end_src
#+RESULTS:
2020-04-03 14:05:30 +02:00
:RESULTS:
| <Figure | size | 432x288 | with | 1 | Axes> | <matplotlib.axes._subplots.AxesSubplot | at | 0x7ff6fb53b0d0> |
[[file:./.ob-jupyter/13665238c516fd85aee4cf3d84017a3edefad70f.png]]
:END:
2020-03-31 15:19:51 +02:00
2020-04-02 15:55:07 +02:00
And the same for the p_t (transverse momentum) distribution.
2020-03-31 15:35:03 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
2020-04-02 15:55:07 +02:00
p_t_sample = p_t(momentum_sample)
2020-04-02 16:33:30 +02:00
draw_histo(p_t_sample, r'$p_T$ [GeV]')
2020-04-02 15:55:07 +02:00
#+end_src
#+RESULTS:
2020-04-03 14:05:30 +02:00
:RESULTS:
| <Figure | size | 432x288 | with | 1 | Axes> | <matplotlib.axes._subplots.AxesSubplot | at | 0x7ff6fb5d23d0> |
[[file:./.ob-jupyter/f1fe0ff3ce1e84dcde0355e1ebec7a39a09fd603.png]]
:END:
2020-04-02 15:55:07 +02:00
That looks somewhat fishy, but it isn't.
#+begin_src jupyter-python :exports both :results raw drawer
fig, ax = set_up_plot()
points = np.linspace(interval_pt[0], interval_pt[1] - .01, 1000)
ax.plot(points, gev_to_pb(diff_xs_p_t(points, charge, esp)))
ax.set_xlabel(r'$p_T$')
ax.set_xlim(interval_pt[0], interval_pt[1] + 1)
ax.set_ylim([0, gev_to_pb(diff_xs_p_t(interval_pt[1] -.01, charge, esp))])
ax.set_ylabel(r'$\frac{d\sigma}{dp_t}$ [pb]')
save_fig(fig, 'diff_xs_p_t', 'xs_sampling', size=[4, 3])
#+end_src
#+RESULTS:
[[file:./.ob-jupyter/739fdde6357d58890ef7847d0afc3277cffa9062.png]]
this is strongly peaked at p_t=100GeV. (The jacobian goes like 1/x there!)
**** Sampling the η cross section
2020-04-02 16:33:30 +02:00
An again we see that the efficiency is way, way! better...
2020-04-02 15:55:07 +02:00
#+begin_src jupyter-python :exports both :results raw drawer
η_sample, η_efficiency = \
monte_carlo.sample_unweighted_array(sample_num, dist_η,
interval_η, report_efficiency=True)
η_efficiency
#+end_src
#+RESULTS:
2020-04-03 14:05:30 +02:00
: 0.4033333333333333
2020-04-02 15:55:07 +02:00
Let's draw a histogram to compare with the previous results.
#+begin_src jupyter-python :exports both :results raw drawer
draw_histo(η_sample, r'$\eta$')
2020-03-30 20:26:10 +02:00
#+end_src
#+RESULTS:
2020-04-03 14:05:30 +02:00
:RESULTS:
| <Figure | size | 432x288 | with | 1 | Axes> | <matplotlib.axes._subplots.AxesSubplot | at | 0x7ff6f9c27a00> |
[[file:./.ob-jupyter/08043c8f8e6f6981439dda8072b6e538f2f02e73.png]]
:END:
2020-04-02 15:55:07 +02:00
Looks good to me :).