2020-03-30 15:43:55 +02:00
|
|
|
|
#+PROPERTY: header-args :exports both :output-dir results
|
2020-03-27 15:43:13 +01:00
|
|
|
|
|
2020-03-27 13:39:00 +01:00
|
|
|
|
* Init
|
|
|
|
|
** Required Modules
|
|
|
|
|
#+NAME: e988e3f2-ad1f-49a3-ad60-bedba3863283
|
2020-03-27 19:34:22 +01:00
|
|
|
|
#+begin_src ipython :session :exports both
|
|
|
|
|
import numpy as np
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
#+end_src
|
2020-03-27 13:39:00 +01:00
|
|
|
|
|
|
|
|
|
#+RESULTS: e988e3f2-ad1f-49a3-ad60-bedba3863283
|
|
|
|
|
|
|
|
|
|
** Utilities
|
|
|
|
|
#+NAME: 53548778-a4c1-461a-9b1f-0f401df12b08
|
2020-03-30 15:43:55 +02:00
|
|
|
|
#+BEGIN_SRC ipython :session :exports both
|
2020-03-27 13:39:00 +01:00
|
|
|
|
%run ../utility.py
|
2020-03-30 19:19:48 +02:00
|
|
|
|
%load_ext autoreload
|
|
|
|
|
%aimport monte_carlo
|
2020-03-27 13:39:00 +01:00
|
|
|
|
#+END_SRC
|
|
|
|
|
|
|
|
|
|
#+RESULTS: 53548778-a4c1-461a-9b1f-0f401df12b08
|
|
|
|
|
|
2020-03-30 15:43:55 +02:00
|
|
|
|
* Implementation
|
2020-03-27 13:39:00 +01:00
|
|
|
|
#+NAME: 777a013b-6c20-44bd-b58b-6a7690c21c0e
|
2020-03-30 15:43:55 +02:00
|
|
|
|
#+BEGIN_SRC ipython :session :exports both :results raw drawer :exports code :tangle tangled/xs.py
|
2020-03-27 13:39:00 +01:00
|
|
|
|
"""
|
|
|
|
|
Implementation of the analytical cross section for q q_bar ->
|
|
|
|
|
gamma gamma
|
|
|
|
|
|
|
|
|
|
Author: Valentin Boettcher <hiro@protagon.space>
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
from scipy.constants import alpha
|
|
|
|
|
|
|
|
|
|
# NOTE: a more elegant solution would be a decorator
|
|
|
|
|
def energy_factor(charge, esp):
|
|
|
|
|
"""
|
|
|
|
|
Calculates the factor common to all other values in this module
|
|
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
|
esp -- center of momentum energy in GeV
|
|
|
|
|
charge -- charge of the particle in units of the elementary charge
|
|
|
|
|
"""
|
|
|
|
|
|
2020-03-27 14:30:55 +01:00
|
|
|
|
return charge**4*(alpha/esp)**2/6
|
2020-03-27 13:39:00 +01:00
|
|
|
|
|
|
|
|
|
|
2020-03-28 11:43:21 +01:00
|
|
|
|
def diff_xs(θ, charge, esp):
|
2020-03-27 13:39:00 +01:00
|
|
|
|
"""
|
|
|
|
|
Calculates the differential cross section as a function of the
|
2020-03-30 15:43:55 +02:00
|
|
|
|
azimuth angle θ in units of 1/GeV².
|
2020-03-27 13:39:00 +01:00
|
|
|
|
|
|
|
|
|
Arguments:
|
2020-03-28 11:43:21 +01:00
|
|
|
|
θ -- azimuth angle
|
2020-03-27 13:39:00 +01:00
|
|
|
|
esp -- center of momentum energy in GeV
|
|
|
|
|
charge -- charge of the particle in units of the elementary charge
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
f = energy_factor(charge, esp)
|
2020-03-30 19:19:48 +02:00
|
|
|
|
return f*((np.cos(θ)**2+1)/np.sin(θ)**2)
|
2020-03-27 13:39:00 +01:00
|
|
|
|
|
2020-03-30 19:56:02 +02:00
|
|
|
|
def diff_xs_cosθ(cosθ, charge, esp):
|
|
|
|
|
"""
|
|
|
|
|
Calculates the differential cross section as a function of the
|
|
|
|
|
cosine of the azimuth angle θ in units of 1/GeV².
|
|
|
|
|
|
|
|
|
|
Arguments:
|
2020-03-30 20:26:10 +02:00
|
|
|
|
cosθ -- cosine of the azimuth angle
|
2020-03-30 19:56:02 +02:00
|
|
|
|
esp -- center of momentum energy in GeV
|
|
|
|
|
charge -- charge of the particle in units of the elementary charge
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
f = energy_factor(charge, esp)
|
|
|
|
|
return f*((cosθ**2+1)/(1-cosθ**2))
|
|
|
|
|
|
2020-03-28 11:53:45 +01:00
|
|
|
|
def diff_xs_eta(η, charge, esp):
|
2020-03-27 13:39:00 +01:00
|
|
|
|
"""
|
|
|
|
|
Calculates the differential cross section as a function of the
|
|
|
|
|
pseudo rapidity of the photons in units of 1/GeV^2.
|
|
|
|
|
|
|
|
|
|
Arguments:
|
2020-03-28 11:43:21 +01:00
|
|
|
|
η -- pseudo rapidity
|
2020-03-27 13:39:00 +01:00
|
|
|
|
esp -- center of momentum energy in GeV
|
|
|
|
|
charge -- charge of the particle in units of the elementary charge
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
f = energy_factor(charge, esp)
|
2020-03-28 11:43:21 +01:00
|
|
|
|
return f*(2*np.cosh(η)**2 - 1)
|
2020-03-27 13:39:00 +01:00
|
|
|
|
|
2020-03-30 20:26:10 +02:00
|
|
|
|
def diff_xs_pt(pt, charge, esp):
|
|
|
|
|
"""
|
|
|
|
|
Calculates the differential cross section as a function of the
|
|
|
|
|
transversal impulse of the photons in units of 1/GeV^2.
|
|
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
|
η -- transversal impulse
|
|
|
|
|
esp -- center of momentum energy in GeV
|
|
|
|
|
charge -- charge of the particle in units of the elementary charge
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
f = energy_factor(charge, esp)
|
|
|
|
|
return f*((esp/pt)**2/2 - 1)
|
|
|
|
|
|
2020-03-28 11:53:45 +01:00
|
|
|
|
def total_xs_eta(η, charge, esp):
|
2020-03-27 13:39:00 +01:00
|
|
|
|
"""
|
|
|
|
|
Calculates the total cross section as a function of the pseudo
|
|
|
|
|
rapidity of the photons in units of 1/GeV^2. If the rapditiy is
|
|
|
|
|
specified as a tuple, it is interpreted as an interval. Otherwise
|
2020-03-28 11:43:21 +01:00
|
|
|
|
the interval [-η, η] will be used.
|
2020-03-27 13:39:00 +01:00
|
|
|
|
|
|
|
|
|
Arguments:
|
2020-03-28 11:43:21 +01:00
|
|
|
|
η -- pseudo rapidity (tuple or number)
|
2020-03-27 13:39:00 +01:00
|
|
|
|
esp -- center of momentum energy in GeV
|
|
|
|
|
charge -- charge of the particle in units of the elementar charge
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
f = energy_factor(charge, esp)
|
2020-03-28 11:43:21 +01:00
|
|
|
|
if not isinstance(η, tuple):
|
|
|
|
|
η = (-η, η)
|
2020-03-27 13:39:00 +01:00
|
|
|
|
|
2020-03-28 11:43:21 +01:00
|
|
|
|
if len(η) != 2:
|
|
|
|
|
raise ValueError('Invalid η cut.')
|
2020-03-27 13:39:00 +01:00
|
|
|
|
|
|
|
|
|
def F(x):
|
|
|
|
|
return np.tanh(x) - 2*x
|
|
|
|
|
|
2020-03-28 11:43:21 +01:00
|
|
|
|
return 2*np.pi*f*(F(η[0]) - F(η[1]))
|
2020-03-27 13:39:00 +01:00
|
|
|
|
#+END_SRC
|
|
|
|
|
|
|
|
|
|
#+RESULTS: 777a013b-6c20-44bd-b58b-6a7690c21c0e
|
|
|
|
|
:RESULTS:
|
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
* Calculations
|
|
|
|
|
** XS qq -> gamma gamma
|
|
|
|
|
First, set up the input parameters.
|
|
|
|
|
#+NAME: 7e62918a-2935-41ac-94e0-f0e7c3af8e0d
|
2020-03-27 19:34:22 +01:00
|
|
|
|
#+BEGIN_SRC ipython :session :exports both :results raw drawer
|
2020-03-28 11:43:21 +01:00
|
|
|
|
η = 2.5
|
2020-03-27 13:39:00 +01:00
|
|
|
|
charge = 1/3
|
|
|
|
|
esp = 200 # GeV
|
|
|
|
|
#+END_SRC
|
|
|
|
|
|
|
|
|
|
#+RESULTS: 7e62918a-2935-41ac-94e0-f0e7c3af8e0d
|
|
|
|
|
:RESULTS:
|
|
|
|
|
:END:
|
|
|
|
|
|
2020-03-30 19:19:48 +02:00
|
|
|
|
|
|
|
|
|
*** Analytical Integratin
|
2020-03-27 13:39:00 +01:00
|
|
|
|
And now calculate the cross section in picobarn.
|
|
|
|
|
#+NAME: cf853fb6-d338-482e-bc55-bd9f8e796495
|
2020-03-30 15:43:55 +02:00
|
|
|
|
#+BEGIN_SRC ipython :session :exports both :results drawer output file :file xs.tex
|
|
|
|
|
xs_gev = total_xs_eta(η, charge, esp)
|
2020-03-28 11:43:21 +01:00
|
|
|
|
xs_pb = gev_to_pb(xs_gev)
|
2020-03-30 15:43:55 +02:00
|
|
|
|
print(tex_value(xs_pb, unit=r'\pico\barn', prefix=r'\sigma = ', prec=5))
|
2020-03-27 13:39:00 +01:00
|
|
|
|
#+END_SRC
|
|
|
|
|
|
|
|
|
|
#+RESULTS: cf853fb6-d338-482e-bc55-bd9f8e796495
|
|
|
|
|
:RESULTS:
|
2020-03-30 15:43:55 +02:00
|
|
|
|
[[file:results/xs.tex]]
|
2020-03-27 14:30:55 +01:00
|
|
|
|
:END:
|
|
|
|
|
|
2020-03-27 15:43:13 +01:00
|
|
|
|
Compared to sherpa, it's pretty close.
|
2020-03-27 14:30:55 +01:00
|
|
|
|
#+NAME: 81b5ed93-0312-45dc-beec-e2ba92e22626
|
2020-03-27 19:34:22 +01:00
|
|
|
|
#+BEGIN_SRC ipython :session :exports both :results raw drawer
|
2020-03-27 14:30:55 +01:00
|
|
|
|
sherpa = 0.0538009
|
|
|
|
|
xs_pb/sherpa
|
|
|
|
|
#+END_SRC
|
|
|
|
|
|
|
|
|
|
#+RESULTS: 81b5ed93-0312-45dc-beec-e2ba92e22626
|
|
|
|
|
:RESULTS:
|
|
|
|
|
0.9998585425137037
|
|
|
|
|
:END:
|
2020-03-27 15:43:13 +01:00
|
|
|
|
|
|
|
|
|
I had to set the runcard option ~EW_SCHEME: alpha0~ to use the pure
|
|
|
|
|
QED coupling constant.
|
2020-03-30 20:26:10 +02:00
|
|
|
|
*** Numerical Integration and Sampling
|
2020-03-30 19:19:48 +02:00
|
|
|
|
Set up the integration and plot intervals.
|
|
|
|
|
#+begin_src ipython :session :exports both :results raw drawer
|
2020-03-30 19:56:02 +02:00
|
|
|
|
interval_η = [-η, η]
|
2020-03-30 19:19:48 +02:00
|
|
|
|
interval = η_to_θ([-η, η])
|
2020-03-30 19:56:02 +02:00
|
|
|
|
interval_cosθ = np.cos(interval)
|
2020-03-30 20:26:10 +02:00
|
|
|
|
interval_pt = η_to_pt([0, η], esp/2)
|
2020-03-30 19:19:48 +02:00
|
|
|
|
plot_interval = [0.1, np.pi-.1]
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
Plot our nice distribution:
|
|
|
|
|
#+begin_src ipython :session :exports both :results raw drawer
|
|
|
|
|
plot_points = np.linspace(*plot_interval, 1000)
|
|
|
|
|
|
|
|
|
|
fig, ax = set_up_plot()
|
|
|
|
|
ax.plot(plot_points, gev_to_pb(diff_xs(plot_points, charge=charge, esp=esp)))
|
|
|
|
|
ax.set_xlabel(r'$\theta$')
|
|
|
|
|
ax.set_ylabel(r'$\frac{d\sigma}{d\Omega}$ [pb]')
|
|
|
|
|
ax.axvline(interval[0], color='gray', linestyle='--')
|
|
|
|
|
ax.axvline(interval[1], color='gray', linestyle='--', label=rf'$|\eta|={η}$')
|
|
|
|
|
ax.legend()
|
|
|
|
|
save_fig(fig, 'diff_xs', 'xs', size=[4, 4])
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
2020-03-30 20:26:10 +02:00
|
|
|
|
[[file:./obipy-resources/EvlB5m.png]]
|
2020-03-30 19:19:48 +02:00
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
Define the integrand.
|
|
|
|
|
#+begin_src ipython :session :exports both :results raw drawer
|
|
|
|
|
def xs_pb_int(θ):
|
|
|
|
|
return gev_to_pb(np.sin(θ)*diff_xs(θ, charge=charge, esp=esp))
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
Plot the integrand. # TODO: remove duplication
|
|
|
|
|
#+begin_src ipython :session :exports both :results raw drawer
|
|
|
|
|
fig, ax = set_up_plot()
|
|
|
|
|
ax.plot(plot_points, xs_pb_int(plot_points))
|
|
|
|
|
ax.set_xlabel(r'$\theta$')
|
|
|
|
|
ax.set_ylabel(r'$\sin(\theta)\cdot\frac{d\sigma}{d\theta}$ [pb]')
|
|
|
|
|
ax.axvline(interval[0], color='gray', linestyle='--')
|
|
|
|
|
ax.axvline(interval[1], color='gray', linestyle='--', label=rf'$|\eta|={η}$')
|
|
|
|
|
ax.legend()
|
|
|
|
|
save_fig(fig, 'xs_integrand', 'xs', size=[4, 4])
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
2020-03-30 20:26:10 +02:00
|
|
|
|
[[file:./obipy-resources/lOkEKe.png]]
|
2020-03-30 19:19:48 +02:00
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Intergrate σ with the mc method.
|
|
|
|
|
#+begin_src ipython :session :exports both :results raw drawer
|
|
|
|
|
xs_pb_mc, xs_pb_mc_err = integrate(xs_pb_int, interval, 10000)
|
|
|
|
|
xs_pb_mc = xs_pb_mc*np.pi*2
|
|
|
|
|
xs_pb_mc, xs_pb_mc_err
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
2020-03-30 20:26:10 +02:00
|
|
|
|
(0.05382327328187836, 4.2568280254619665e-05)
|
2020-03-30 19:19:48 +02:00
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
#+begin_src ipython :session :exports both :results raw drawer output :file xs_mc.tex
|
|
|
|
|
print(tex_value(xs_pb_mc, unit=r'\pico\barn', prefix=r'\sigma = ', prec=5))
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
|
|
|
|
[[file:results/xs_mc.tex]]
|
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
Now we monte-carlo sample our distribution.
|
|
|
|
|
#+begin_src ipython :session :exports both :results raw drawer
|
2020-03-30 19:56:02 +02:00
|
|
|
|
cosθ_sample = sample(lambda x: diff_xs_cosθ(x, charge, esp), interval_cosθ)
|
|
|
|
|
η_sample = sample(lambda x: diff_xs_eta(x, charge, esp), interval_η)
|
2020-03-30 20:26:10 +02:00
|
|
|
|
pt_sample = sample(lambda x: diff_xs_pt(x, charge, esp), interval_pt)
|
|
|
|
|
|
2020-03-30 19:56:02 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
Nice! And now draw some histograms.
|
|
|
|
|
|
|
|
|
|
We define an auxilliary method for convenience.
|
|
|
|
|
#+begin_src ipython :session :exports both :results raw drawer
|
|
|
|
|
def draw_histo(points, xlabel, bins=20):
|
|
|
|
|
fig, ax = set_up_plot()
|
|
|
|
|
ax.hist(points, bins, histtype='step')
|
|
|
|
|
ax.set_xlabel(xlabel)
|
|
|
|
|
ax.set_xlim([points.min(), points.max()])
|
|
|
|
|
return fig, ax
|
2020-03-30 19:19:48 +02:00
|
|
|
|
#+end_src
|
2020-03-30 19:56:02 +02:00
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
The histogram for cosθ.
|
|
|
|
|
#+begin_src ipython :session :exports both :results raw drawer
|
|
|
|
|
fig, _ = draw_histo(cosθ_sample, r'$\cos\theta$')
|
|
|
|
|
save_fig(fig, 'histo_cos_theta', 'xs', size=(4,2))
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
2020-03-30 20:26:10 +02:00
|
|
|
|
[[file:./obipy-resources/UtLSDE.png]]
|
2020-03-30 19:56:02 +02:00
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
And the histogram for η.
|
|
|
|
|
#+begin_src ipython :session :exports both :results raw drawer
|
|
|
|
|
draw_histo(η_sample, r'$\eta$')
|
|
|
|
|
save_fig(fig, 'histo_eta', 'xs', size=(4,2))
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
2020-03-30 20:26:10 +02:00
|
|
|
|
[[file:./obipy-resources/I7AUEF.png]]
|
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
And the same for pt.
|
|
|
|
|
#+begin_src ipython :session :exports both :results raw drawer
|
|
|
|
|
draw_histo(pt_sample, r'$p_{T}$ [GeV]')
|
|
|
|
|
save_fig(fig, 'histo_pt', 'xs', size=(4,2))
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
|
|
|
|
[[file:./obipy-resources/Ix0X0o.png]]
|
2020-03-30 19:56:02 +02:00
|
|
|
|
:END:
|