2020-03-31 15:35:03 +02:00
|
|
|
|
#+PROPERTY: header-args :exports both :output-dir results :session xs :kernel python3
|
2020-04-06 19:17:48 +02:00
|
|
|
|
#+TITLE: Investigaton of Monte-Carlo Methods
|
|
|
|
|
#+AUTHOR: Valentin Boettcher
|
2020-03-27 15:43:13 +01:00
|
|
|
|
|
2020-03-27 13:39:00 +01:00
|
|
|
|
* Init
|
|
|
|
|
** Required Modules
|
|
|
|
|
#+NAME: e988e3f2-ad1f-49a3-ad60-bedba3863283
|
2020-03-31 15:35:03 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :tangle tangled/xs.py
|
2020-03-27 19:34:22 +01:00
|
|
|
|
import numpy as np
|
|
|
|
|
import matplotlib.pyplot as plt
|
2020-03-31 15:19:51 +02:00
|
|
|
|
import monte_carlo
|
2020-03-27 19:34:22 +01:00
|
|
|
|
#+end_src
|
2020-03-27 13:39:00 +01:00
|
|
|
|
|
|
|
|
|
#+RESULTS: e988e3f2-ad1f-49a3-ad60-bedba3863283
|
|
|
|
|
|
|
|
|
|
** Utilities
|
|
|
|
|
#+NAME: 53548778-a4c1-461a-9b1f-0f401df12b08
|
2020-03-31 15:35:03 +02:00
|
|
|
|
#+BEGIN_SRC jupyter-python :exports both
|
2020-03-27 13:39:00 +01:00
|
|
|
|
%run ../utility.py
|
2020-03-30 19:19:48 +02:00
|
|
|
|
%load_ext autoreload
|
|
|
|
|
%aimport monte_carlo
|
2020-03-31 15:19:51 +02:00
|
|
|
|
%autoreload 1
|
2020-03-27 13:39:00 +01:00
|
|
|
|
#+END_SRC
|
|
|
|
|
|
|
|
|
|
#+RESULTS: 53548778-a4c1-461a-9b1f-0f401df12b08
|
2020-05-01 11:30:37 +02:00
|
|
|
|
: The autoreload extension is already loaded. To reload it, use:
|
|
|
|
|
: %reload_ext autoreload
|
2020-03-27 13:39:00 +01:00
|
|
|
|
|
2020-03-30 15:43:55 +02:00
|
|
|
|
* Implementation
|
2020-04-18 20:00:18 +02:00
|
|
|
|
** Center of Mass Frame
|
2020-03-27 13:39:00 +01:00
|
|
|
|
#+NAME: 777a013b-6c20-44bd-b58b-6a7690c21c0e
|
2020-03-31 15:35:03 +02:00
|
|
|
|
#+BEGIN_SRC jupyter-python :exports both :results raw drawer :exports code :tangle tangled/xs.py
|
2020-03-27 13:39:00 +01:00
|
|
|
|
"""
|
|
|
|
|
Implementation of the analytical cross section for q q_bar ->
|
|
|
|
|
gamma gamma
|
|
|
|
|
|
|
|
|
|
Author: Valentin Boettcher <hiro@protagon.space>
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
# NOTE: a more elegant solution would be a decorator
|
|
|
|
|
def energy_factor(charge, esp):
|
|
|
|
|
"""
|
|
|
|
|
Calculates the factor common to all other values in this module
|
|
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
|
esp -- center of momentum energy in GeV
|
|
|
|
|
charge -- charge of the particle in units of the elementary charge
|
|
|
|
|
"""
|
|
|
|
|
|
2020-04-18 20:00:18 +02:00
|
|
|
|
return charge ** 4 / (137.036 * esp) ** 2 / 6
|
2020-03-27 13:39:00 +01:00
|
|
|
|
|
|
|
|
|
|
2020-03-28 11:43:21 +01:00
|
|
|
|
def diff_xs(θ, charge, esp):
|
2020-03-27 13:39:00 +01:00
|
|
|
|
"""
|
|
|
|
|
Calculates the differential cross section as a function of the
|
2020-03-30 15:43:55 +02:00
|
|
|
|
azimuth angle θ in units of 1/GeV².
|
2020-03-27 13:39:00 +01:00
|
|
|
|
|
2020-04-01 12:14:35 +02:00
|
|
|
|
Here dΩ=sinθdθdφ
|
|
|
|
|
|
2020-03-27 13:39:00 +01:00
|
|
|
|
Arguments:
|
2020-03-28 11:43:21 +01:00
|
|
|
|
θ -- azimuth angle
|
2020-03-27 13:39:00 +01:00
|
|
|
|
esp -- center of momentum energy in GeV
|
|
|
|
|
charge -- charge of the particle in units of the elementary charge
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
f = energy_factor(charge, esp)
|
2020-04-18 20:00:18 +02:00
|
|
|
|
return f * ((np.cos(θ) ** 2 + 1) / np.sin(θ) ** 2)
|
|
|
|
|
|
2020-03-27 13:39:00 +01:00
|
|
|
|
|
2020-03-30 19:56:02 +02:00
|
|
|
|
def diff_xs_cosθ(cosθ, charge, esp):
|
|
|
|
|
"""
|
|
|
|
|
Calculates the differential cross section as a function of the
|
|
|
|
|
cosine of the azimuth angle θ in units of 1/GeV².
|
|
|
|
|
|
2020-04-01 12:14:35 +02:00
|
|
|
|
Here dΩ=d(cosθ)dφ
|
|
|
|
|
|
2020-03-30 19:56:02 +02:00
|
|
|
|
Arguments:
|
2020-03-30 20:26:10 +02:00
|
|
|
|
cosθ -- cosine of the azimuth angle
|
2020-03-30 19:56:02 +02:00
|
|
|
|
esp -- center of momentum energy in GeV
|
|
|
|
|
charge -- charge of the particle in units of the elementary charge
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
f = energy_factor(charge, esp)
|
2020-04-18 20:00:18 +02:00
|
|
|
|
return f * ((cosθ ** 2 + 1) / (1 - cosθ ** 2))
|
2020-03-30 19:56:02 +02:00
|
|
|
|
|
2020-04-02 15:55:07 +02:00
|
|
|
|
|
2020-03-28 11:53:45 +01:00
|
|
|
|
def diff_xs_eta(η, charge, esp):
|
2020-03-27 13:39:00 +01:00
|
|
|
|
"""
|
|
|
|
|
Calculates the differential cross section as a function of the
|
|
|
|
|
pseudo rapidity of the photons in units of 1/GeV^2.
|
|
|
|
|
|
2020-04-01 12:14:35 +02:00
|
|
|
|
This is actually the crossection dσ/(dφdη).
|
2020-03-30 20:26:10 +02:00
|
|
|
|
|
|
|
|
|
Arguments:
|
2020-04-01 12:14:35 +02:00
|
|
|
|
η -- pseudo rapidity
|
2020-03-30 20:26:10 +02:00
|
|
|
|
esp -- center of momentum energy in GeV
|
|
|
|
|
charge -- charge of the particle in units of the elementary charge
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
f = energy_factor(charge, esp)
|
2020-04-18 20:00:18 +02:00
|
|
|
|
return f * (np.tanh(η) ** 2 + 1)
|
2020-03-30 20:26:10 +02:00
|
|
|
|
|
2020-04-02 15:55:07 +02:00
|
|
|
|
|
|
|
|
|
def diff_xs_p_t(p_t, charge, esp):
|
|
|
|
|
"""
|
|
|
|
|
Calculates the differential cross section as a function of the
|
|
|
|
|
transverse momentum (p_t) of the photons in units of 1/GeV^2.
|
|
|
|
|
|
|
|
|
|
This is actually the crossection dσ/(dφdp_t).
|
|
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
|
p_t -- transverse momentum in GeV
|
|
|
|
|
esp -- center of momentum energy in GeV
|
|
|
|
|
charge -- charge of the particle in units of the elementary charge
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
f = energy_factor(charge, esp)
|
2020-04-18 20:00:18 +02:00
|
|
|
|
sqrt_fact = np.sqrt(1 - (2 * p_t / esp) ** 2)
|
|
|
|
|
return f / p_t * (1 / sqrt_fact + sqrt_fact)
|
2020-04-02 15:55:07 +02:00
|
|
|
|
|
|
|
|
|
|
2020-03-28 11:53:45 +01:00
|
|
|
|
def total_xs_eta(η, charge, esp):
|
2020-03-27 13:39:00 +01:00
|
|
|
|
"""
|
|
|
|
|
Calculates the total cross section as a function of the pseudo
|
|
|
|
|
rapidity of the photons in units of 1/GeV^2. If the rapditiy is
|
|
|
|
|
specified as a tuple, it is interpreted as an interval. Otherwise
|
2020-03-28 11:43:21 +01:00
|
|
|
|
the interval [-η, η] will be used.
|
2020-03-27 13:39:00 +01:00
|
|
|
|
|
|
|
|
|
Arguments:
|
2020-03-28 11:43:21 +01:00
|
|
|
|
η -- pseudo rapidity (tuple or number)
|
2020-03-27 13:39:00 +01:00
|
|
|
|
esp -- center of momentum energy in GeV
|
|
|
|
|
charge -- charge of the particle in units of the elementar charge
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
f = energy_factor(charge, esp)
|
2020-03-28 11:43:21 +01:00
|
|
|
|
if not isinstance(η, tuple):
|
|
|
|
|
η = (-η, η)
|
2020-03-27 13:39:00 +01:00
|
|
|
|
|
2020-03-28 11:43:21 +01:00
|
|
|
|
if len(η) != 2:
|
2020-04-18 20:00:18 +02:00
|
|
|
|
raise ValueError("Invalid η cut.")
|
2020-03-27 13:39:00 +01:00
|
|
|
|
|
|
|
|
|
def F(x):
|
2020-04-18 20:00:18 +02:00
|
|
|
|
return np.tanh(x) - 2 * x
|
2020-03-27 13:39:00 +01:00
|
|
|
|
|
2020-04-18 20:00:18 +02:00
|
|
|
|
return 2 * np.pi * f * (F(η[0]) - F(η[1]))
|
2020-03-27 13:39:00 +01:00
|
|
|
|
#+END_SRC
|
|
|
|
|
|
|
|
|
|
#+RESULTS: 777a013b-6c20-44bd-b58b-6a7690c21c0e
|
|
|
|
|
* Calculations
|
|
|
|
|
First, set up the input parameters.
|
2020-03-31 15:35:03 +02:00
|
|
|
|
#+BEGIN_SRC jupyter-python :exports both :results raw drawer
|
2020-03-28 11:43:21 +01:00
|
|
|
|
η = 2.5
|
2020-03-27 13:39:00 +01:00
|
|
|
|
charge = 1/3
|
|
|
|
|
esp = 200 # GeV
|
|
|
|
|
#+END_SRC
|
|
|
|
|
|
2020-04-02 17:37:31 +02:00
|
|
|
|
#+RESULTS:
|
2020-03-31 16:40:10 +02:00
|
|
|
|
|
2020-03-31 12:16:57 +02:00
|
|
|
|
Set up the integration and plot intervals.
|
2020-03-31 15:35:03 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-03-31 12:16:57 +02:00
|
|
|
|
interval_η = [-η, η]
|
|
|
|
|
interval = η_to_θ([-η, η])
|
|
|
|
|
interval_cosθ = np.cos(interval)
|
2020-04-02 15:55:07 +02:00
|
|
|
|
interval_pt = np.sort(η_to_pt([0, η], esp/2))
|
2020-03-31 12:16:57 +02:00
|
|
|
|
plot_interval = [0.1, np.pi-.1]
|
|
|
|
|
#+end_src
|
|
|
|
|
|
2020-03-31 15:19:51 +02:00
|
|
|
|
#+RESULTS:
|
|
|
|
|
|
2020-04-05 13:55:28 +02:00
|
|
|
|
#+begin_note
|
|
|
|
|
Note that we could utilize the symetry of the integrand throughout,
|
|
|
|
|
but that doen't reduce variance and would complicate things now.
|
|
|
|
|
#+end_note
|
|
|
|
|
|
2020-04-05 12:30:38 +02:00
|
|
|
|
** Analytical Integration
|
|
|
|
|
And now calculate the cross section in picobarn.
|
|
|
|
|
#+BEGIN_SRC jupyter-python :exports both :results raw file :file xs.tex
|
|
|
|
|
xs_gev = total_xs_eta(η, charge, esp)
|
|
|
|
|
xs_pb = gev_to_pb(xs_gev)
|
|
|
|
|
tex_value(xs_pb, unit=r'\pico\barn', prefix=r'\sigma = ',
|
|
|
|
|
prec=6, save=('results', 'xs.tex'))
|
|
|
|
|
#+END_SRC
|
2020-03-27 13:39:00 +01:00
|
|
|
|
|
2020-04-05 12:30:38 +02:00
|
|
|
|
#+RESULTS:
|
|
|
|
|
: \(\sigma = \SI{0.053793}{\pico\barn}\)
|
2020-04-29 14:55:41 +02:00
|
|
|
|
# [goto error]
|
2020-03-27 14:30:55 +01:00
|
|
|
|
|
2020-04-05 12:30:38 +02:00
|
|
|
|
Lets plot the total xs as a function of η.
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
|
|
|
|
fig, ax = set_up_plot()
|
|
|
|
|
η_s = np.linspace(0, 3, 1000)
|
|
|
|
|
ax.plot(η_s, gev_to_pb(total_xs_eta(η_s, charge, esp)))
|
|
|
|
|
ax.set_xlabel(r'$\eta$')
|
|
|
|
|
ax.set_ylabel(r'$\sigma$ [pb]')
|
|
|
|
|
ax.set_xlim([0, max(η_s)])
|
|
|
|
|
ax.set_ylim(0)
|
2020-04-07 10:07:11 +02:00
|
|
|
|
save_fig(fig, 'total_xs', 'xs', size=[2.5, 2.5])
|
2020-04-05 12:30:38 +02:00
|
|
|
|
#+end_src
|
2020-04-01 15:03:38 +02:00
|
|
|
|
|
2020-04-05 12:30:38 +02:00
|
|
|
|
#+RESULTS:
|
2020-04-07 10:07:11 +02:00
|
|
|
|
[[file:./.ob-jupyter/4522eb3fbeaa14978f9838371acb0650910b8dbf.png]]
|
2020-04-01 15:03:38 +02:00
|
|
|
|
|
|
|
|
|
|
2020-04-05 12:30:38 +02:00
|
|
|
|
Compared to sherpa, it's pretty close.
|
|
|
|
|
#+NAME: 81b5ed93-0312-45dc-beec-e2ba92e22626
|
|
|
|
|
#+BEGIN_SRC jupyter-python :exports both :results raw drawer
|
|
|
|
|
sherpa = 0.05380
|
|
|
|
|
xs_pb - sherpa
|
|
|
|
|
#+END_SRC
|
2020-03-27 14:30:55 +01:00
|
|
|
|
|
2020-04-05 12:30:38 +02:00
|
|
|
|
#+RESULTS: 81b5ed93-0312-45dc-beec-e2ba92e22626
|
|
|
|
|
: -6.7112594623469635e-06
|
2020-03-27 15:43:13 +01:00
|
|
|
|
|
2020-04-05 12:30:38 +02:00
|
|
|
|
I had to set the runcard option ~EW_SCHEME: alpha0~ to use the pure
|
|
|
|
|
QED coupling constant.
|
2020-03-30 19:19:48 +02:00
|
|
|
|
|
2020-04-05 12:30:38 +02:00
|
|
|
|
** Numerical Integration
|
2020-03-30 19:19:48 +02:00
|
|
|
|
Plot our nice distribution:
|
2020-03-31 15:35:03 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-07 10:07:11 +02:00
|
|
|
|
plot_points = np.linspace(*plot_interval, 1000)
|
2020-03-30 19:19:48 +02:00
|
|
|
|
|
2020-04-07 10:07:11 +02:00
|
|
|
|
fig, ax = set_up_plot()
|
|
|
|
|
ax.plot(plot_points, gev_to_pb(diff_xs(plot_points, charge=charge, esp=esp)))
|
|
|
|
|
ax.set_xlabel(r'$\theta$')
|
|
|
|
|
ax.set_ylabel(r'$d\sigma/d\Omega$ [pb]')
|
|
|
|
|
ax.set_xlim([plot_points.min(), plot_points.max()])
|
|
|
|
|
ax.axvline(interval[0], color='gray', linestyle='--')
|
|
|
|
|
ax.axvline(interval[1], color='gray', linestyle='--', label=rf'$|\eta|={η}$')
|
|
|
|
|
ax.legend()
|
|
|
|
|
save_fig(fig, 'diff_xs', 'xs', size=[2.5, 2.5])
|
2020-03-30 19:19:48 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-04-07 10:07:11 +02:00
|
|
|
|
[[file:./.ob-jupyter/3dd905e7608b91a9d89503cb41660152f3b4b55c.png]]
|
2020-03-30 19:19:48 +02:00
|
|
|
|
|
|
|
|
|
Define the integrand.
|
2020-03-31 15:35:03 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-03-30 19:19:48 +02:00
|
|
|
|
def xs_pb_int(θ):
|
2020-04-01 13:55:22 +02:00
|
|
|
|
return 2*np.pi*gev_to_pb(np.sin(θ)*diff_xs(θ, charge=charge, esp=esp))
|
2020-04-02 09:16:33 +02:00
|
|
|
|
|
|
|
|
|
def xs_pb_int_η(η):
|
|
|
|
|
return 2*np.pi*gev_to_pb(diff_xs_eta(η, charge, esp))
|
2020-03-30 19:19:48 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
|
|
|
|
|
Plot the integrand. # TODO: remove duplication
|
2020-03-31 15:35:03 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-07 09:57:15 +02:00
|
|
|
|
fig, ax = set_up_plot()
|
|
|
|
|
ax.plot(plot_points, xs_pb_int(plot_points))
|
|
|
|
|
ax.set_xlabel(r'$\theta$')
|
2020-04-08 13:23:50 +02:00
|
|
|
|
ax.set_ylabel(r'$2\pi\cdot d\sigma/d\theta [pb]')
|
2020-04-07 09:57:15 +02:00
|
|
|
|
ax.set_xlim([plot_points.min(), plot_points.max()])
|
|
|
|
|
ax.axvline(interval[0], color='gray', linestyle='--')
|
|
|
|
|
ax.axvline(interval[1], color='gray', linestyle='--', label=rf'$|\eta|={η}$')
|
2020-04-08 13:23:50 +02:00
|
|
|
|
save_fig(fig, 'xs_integrand', 'xs', size=[3, 2.2])
|
2020-03-30 19:19:48 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-04-08 13:23:50 +02:00
|
|
|
|
[[file:./.ob-jupyter/ccb6653162c81c3f3e843225cb8d759178f497e0.png]]
|
2020-04-05 12:30:38 +02:00
|
|
|
|
*** Integral over θ
|
2020-03-30 19:19:48 +02:00
|
|
|
|
Intergrate σ with the mc method.
|
2020-03-31 15:35:03 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-08 13:23:50 +02:00
|
|
|
|
xs_pb_res = monte_carlo.integrate(xs_pb_int, interval, epsilon=1e-3)
|
|
|
|
|
xs_pb_res
|
2020-03-30 19:19:48 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-05-01 11:30:37 +02:00
|
|
|
|
: IntegrationResult(result=0.05341078157056901, sigma=0.0009403117477366878, N=2209)
|
2020-03-30 19:19:48 +02:00
|
|
|
|
|
2020-03-31 15:19:51 +02:00
|
|
|
|
We gonna export that as tex.
|
2020-03-31 16:40:10 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-08 13:23:50 +02:00
|
|
|
|
tex_value(*xs_pb_res.combined_result, unit=r'\pico\barn',
|
|
|
|
|
prefix=r'\sigma = ', save=('results', 'xs_mc.tex'))
|
|
|
|
|
tex_value(xs_pb_res.N, prefix=r'N = ', save=('results', 'xs_mc_N.tex'))
|
2020-03-30 19:19:48 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-05-01 11:30:37 +02:00
|
|
|
|
: \(N = 2209\)
|
2020-04-02 09:05:21 +02:00
|
|
|
|
|
2020-04-05 12:30:38 +02:00
|
|
|
|
*** Integration over η
|
2020-04-02 09:16:33 +02:00
|
|
|
|
Plot the intgrand of the pseudo rap.
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-08 13:23:50 +02:00
|
|
|
|
fig, ax = set_up_plot()
|
|
|
|
|
points = np.linspace(-4, 4, 1000)
|
|
|
|
|
ax.set_xlim([-4, 4])
|
|
|
|
|
ax.plot(points, xs_pb_int_η(points))
|
|
|
|
|
ax.set_xlabel(r'$\eta$')
|
|
|
|
|
ax.set_ylabel(r'$2\pi\cdot d\sigma/d\eta$ [pb]')
|
|
|
|
|
ax.axvline(interval_η[0], color='gray', linestyle='--')
|
|
|
|
|
ax.axvline(interval_η[1], color='gray', linestyle='--', label=rf'$|\eta|={η}$')
|
|
|
|
|
save_fig(fig, 'xs_integrand_eta', 'xs', size=[3, 2])
|
2020-04-02 09:16:33 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-04-08 13:23:50 +02:00
|
|
|
|
[[file:./.ob-jupyter/87a932866f779a2a07abed4ca251fa98113beca7.png]]
|
2020-04-02 09:16:33 +02:00
|
|
|
|
|
2020-04-02 09:05:21 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-02 09:16:33 +02:00
|
|
|
|
xs_pb_η = monte_carlo.integrate(xs_pb_int_η,
|
2020-04-08 13:23:50 +02:00
|
|
|
|
interval_η, epsilon=1e-3)
|
2020-04-02 09:05:21 +02:00
|
|
|
|
xs_pb_η
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-05-01 11:30:37 +02:00
|
|
|
|
: IntegrationResult(result=0.05233083353013518, sigma=0.0009844250201876254, N=143)
|
2020-04-02 09:05:21 +02:00
|
|
|
|
|
2020-04-05 12:34:51 +02:00
|
|
|
|
As we see, the result is a little better if we use pseudo rapidity,
|
|
|
|
|
because the differential cross section does not difverge anymore. But
|
|
|
|
|
becase our η interval is covering the range where all the variance is
|
|
|
|
|
occuring, the improvement is rather marginal.
|
|
|
|
|
|
2020-04-02 09:05:21 +02:00
|
|
|
|
And yet again export that as tex.
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-08 13:23:50 +02:00
|
|
|
|
tex_value(*xs_pb_η.combined_result, unit=r'\pico\barn', prefix=r'\sigma = ',
|
2020-04-06 21:25:22 +02:00
|
|
|
|
save=('results', 'xs_mc_eta.tex'))
|
2020-04-08 13:23:50 +02:00
|
|
|
|
tex_value(xs_pb_η.N, prefix=r'N = ', save=('results', 'xs_mc_eta_N.tex'))
|
2020-04-02 09:05:21 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-05-01 11:30:37 +02:00
|
|
|
|
: \(N = 143\)
|
2020-04-04 22:20:48 +02:00
|
|
|
|
|
2020-04-05 12:30:38 +02:00
|
|
|
|
*** Using =VEGAS=
|
2020-04-04 22:20:48 +02:00
|
|
|
|
Now we use =VEGAS= on the θ parametrisation and see what happens.
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-10 14:51:26 +02:00
|
|
|
|
num_increments = 11
|
|
|
|
|
xs_pb_vegas = monte_carlo.integrate_vegas(
|
|
|
|
|
xs_pb_int,
|
|
|
|
|
interval,
|
|
|
|
|
num_increments=num_increments,
|
|
|
|
|
alpha=1,
|
2020-04-20 10:19:39 +02:00
|
|
|
|
increment_epsilon=0.001,
|
2020-04-10 14:51:26 +02:00
|
|
|
|
acumulate=False,
|
|
|
|
|
)
|
2020-04-09 14:39:28 +02:00
|
|
|
|
xs_pb_vegas
|
2020-04-04 22:20:48 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-05-01 11:30:37 +02:00
|
|
|
|
: VegasIntegrationResult(result=0.05391881612132655, sigma=0.00013475254855627007, N=2805, increment_borders=array([0.16380276, 0.237527 , 0.34500054, 0.50924866, 0.7700416 ,
|
|
|
|
|
: 1.23164456, 1.91661518, 2.37353646, 2.6331313 , 2.79643305,
|
|
|
|
|
: 2.90461962, 2.9777899 ]), vegas_iterations=467)
|
2020-04-04 22:20:48 +02:00
|
|
|
|
|
|
|
|
|
This is pretty good, although the variance reduction may be achieved
|
2020-04-10 14:51:26 +02:00
|
|
|
|
partially by accumulating the results from all runns. Here this gives
|
|
|
|
|
us one order of magnitude more than we wanted.
|
2020-04-04 22:20:48 +02:00
|
|
|
|
|
|
|
|
|
And export that as tex.
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-09 14:39:28 +02:00
|
|
|
|
tex_value(*xs_pb_vegas.combined_result, unit=r'\pico\barn',
|
2020-04-04 22:20:48 +02:00
|
|
|
|
prefix=r'\sigma = ', save=('results', 'xs_mc_θ_vegas.tex'))
|
2020-04-09 14:39:28 +02:00
|
|
|
|
tex_value(xs_pb_vegas.N, prefix=r'N = ', save=('results', 'xs_mc_θ_vegas_N.tex'))
|
2020-04-10 14:51:26 +02:00
|
|
|
|
tex_value(num_increments, prefix=r'K = ', save=('results', 'xs_mc_θ_vegas_K.tex'))
|
2020-04-04 22:20:48 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-04-10 14:51:26 +02:00
|
|
|
|
: \(K = 11\)
|
2020-04-04 22:20:48 +02:00
|
|
|
|
|
2020-04-10 14:51:26 +02:00
|
|
|
|
Surprisingly, acumulation, the result ain't much different.
|
2020-04-04 22:20:48 +02:00
|
|
|
|
This depends, of course, on the iteration count.
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-10 14:51:26 +02:00
|
|
|
|
monte_carlo.integrate_vegas(
|
|
|
|
|
xs_pb_int,
|
|
|
|
|
interval,
|
|
|
|
|
num_increments=num_increments,
|
|
|
|
|
alpha=1,
|
2020-04-20 10:19:39 +02:00
|
|
|
|
increment_epsilon=0.001,
|
2020-04-10 14:51:26 +02:00
|
|
|
|
acumulate=True,
|
|
|
|
|
)
|
2020-04-04 22:20:48 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-05-01 11:30:37 +02:00
|
|
|
|
: VegasIntegrationResult(result=0.053783484288076215, sigma=2.2815161064775525e-05, N=2805, increment_borders=array([0.16380276, 0.23741945, 0.34524286, 0.50821323, 0.77035483,
|
|
|
|
|
: 1.22942806, 1.91564534, 2.37530622, 2.63425979, 2.79678665,
|
|
|
|
|
: 2.90425559, 2.9777899 ]), vegas_iterations=1204)
|
2020-04-02 09:05:21 +02:00
|
|
|
|
|
2020-04-10 14:51:26 +02:00
|
|
|
|
Let's define some little helpers.
|
|
|
|
|
#+begin_src jupyter-python :exports both :tangle tangled/plot_utils.py
|
2020-04-18 20:00:18 +02:00
|
|
|
|
"""
|
|
|
|
|
Some shorthands for common plotting tasks related to the investigation
|
|
|
|
|
of monte-carlo methods in one rimension.
|
|
|
|
|
|
|
|
|
|
Author: Valentin Boettcher <hiro at protagon.space>
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
2020-04-19 17:34:00 +02:00
|
|
|
|
import numpy as np
|
|
|
|
|
from utility import *
|
2020-04-18 20:00:18 +02:00
|
|
|
|
|
|
|
|
|
|
2020-04-10 14:51:26 +02:00
|
|
|
|
def plot_increments(ax, increment_borders, label=None, *args, **kwargs):
|
|
|
|
|
"""Plot the increment borders from a list. The first and last one
|
|
|
|
|
|
|
|
|
|
:param ax: the axis on which to draw
|
|
|
|
|
:param list increment_borders: the borders of the increments
|
|
|
|
|
:param str label: the label to apply to one of the vertical lines
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
ax.axvline(x=increment_borders[1], label=label, *args, **kwargs)
|
|
|
|
|
|
|
|
|
|
for increment in increment_borders[1:-1]:
|
|
|
|
|
ax.axvline(x=increment, *args, **kwargs)
|
|
|
|
|
|
2020-04-12 14:42:29 +02:00
|
|
|
|
|
|
|
|
|
def plot_vegas_weighted_distribution(
|
|
|
|
|
ax, points, dist, increment_borders, *args, **kwargs
|
|
|
|
|
):
|
2020-04-10 14:51:26 +02:00
|
|
|
|
"""Plot the distribution with VEGAS weights applied.
|
|
|
|
|
|
|
|
|
|
:param ax: axis
|
|
|
|
|
:param points: points
|
|
|
|
|
:param dist: distribution
|
|
|
|
|
:param increment_borders: increment borders
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
num_increments = increment_borders.size
|
|
|
|
|
weighted_dist = dist.copy()
|
|
|
|
|
|
2020-04-12 14:42:29 +02:00
|
|
|
|
for left_border, right_border in zip(increment_borders[:-1], increment_borders[1:]):
|
2020-04-10 14:51:26 +02:00
|
|
|
|
length = right_border - left_border
|
|
|
|
|
mask = (left_border <= points) & (points <= right_border)
|
2020-04-12 14:42:29 +02:00
|
|
|
|
weighted_dist[mask] = dist[mask] * num_increments * length
|
2020-04-10 14:51:26 +02:00
|
|
|
|
|
|
|
|
|
ax.plot(points, weighted_dist, *args, **kwargs)
|
2020-04-12 14:42:29 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def plot_stratified_rho(ax, points, increment_borders, *args, **kwargs):
|
|
|
|
|
"""Plot the weighting distribution resulting from the increment
|
|
|
|
|
borders.
|
|
|
|
|
|
|
|
|
|
:param ax: axis
|
|
|
|
|
:param points: points
|
|
|
|
|
:param increment_borders: increment borders
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
num_increments = increment_borders.size
|
|
|
|
|
ρ = np.empty_like(points)
|
|
|
|
|
for left_border, right_border in zip(increment_borders[:-1], increment_borders[1:]):
|
|
|
|
|
length = right_border - left_border
|
|
|
|
|
mask = (left_border <= points) & (points <= right_border)
|
|
|
|
|
ρ[mask] = 1 / (num_increments * length)
|
|
|
|
|
|
|
|
|
|
ax.plot(points, ρ, *args, **kwargs)
|
2020-04-10 14:51:26 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
|
|
|
|
|
And now we plot the integrand with the incremens.
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
|
|
|
|
fig, ax = set_up_plot()
|
|
|
|
|
ax.set_xlim(*interval)
|
|
|
|
|
ax.set_xlabel(r"$\theta$")
|
|
|
|
|
ax.set_ylabel(r"$2\pi\cdot d\sigma/d\theta$ [pb]")
|
|
|
|
|
ax.set_ylim([0, 0.09])
|
|
|
|
|
|
2020-04-12 14:42:29 +02:00
|
|
|
|
ax.plot(plot_points, xs_pb_int(plot_points), label="Distribution")
|
2020-04-10 14:51:26 +02:00
|
|
|
|
|
|
|
|
|
plot_increments(
|
|
|
|
|
ax,
|
|
|
|
|
xs_pb_vegas.increment_borders,
|
|
|
|
|
label="Increment Borders",
|
|
|
|
|
color="gray",
|
|
|
|
|
linestyle="--",
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
plot_vegas_weighted_distribution(
|
|
|
|
|
ax,
|
|
|
|
|
plot_points,
|
|
|
|
|
xs_pb_int(plot_points),
|
|
|
|
|
xs_pb_vegas.increment_borders,
|
2020-04-12 14:42:29 +02:00
|
|
|
|
label="Weighted Distribution",
|
2020-04-10 14:51:26 +02:00
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
ax.legend(fontsize="small", loc="lower left")
|
|
|
|
|
save_fig(fig, "xs_integrand_vegas", "xs", size=[5, 3])
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-05-01 11:30:37 +02:00
|
|
|
|
[[file:./.ob-jupyter/9cb9f40087d5d473cfa956e67f4055544037565d.png]]
|
2020-04-05 12:30:38 +02:00
|
|
|
|
*** Testing the Statistics
|
2020-04-02 17:37:31 +02:00
|
|
|
|
Let's battle test the statistics.
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
|
|
|
|
num_runs = 1000
|
|
|
|
|
num_within = 0
|
|
|
|
|
|
|
|
|
|
for _ in range(num_runs):
|
2020-04-08 13:23:50 +02:00
|
|
|
|
val, err = \
|
|
|
|
|
monte_carlo.integrate(xs_pb_int, interval, epsilon=1e-3).combined_result
|
2020-04-02 17:37:31 +02:00
|
|
|
|
if abs(xs_pb - val) <= err:
|
|
|
|
|
num_within += 1
|
|
|
|
|
|
|
|
|
|
num_within/num_runs
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-05-01 11:30:37 +02:00
|
|
|
|
: 0.687
|
2020-04-02 17:37:31 +02:00
|
|
|
|
|
|
|
|
|
So we see: the standard deviation is sound.
|
|
|
|
|
|
2020-04-06 21:25:22 +02:00
|
|
|
|
Doing the same thing with =VEGAS= works as well.
|
2020-04-04 22:20:48 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-05 13:55:28 +02:00
|
|
|
|
num_runs = 1000
|
|
|
|
|
num_within = 0
|
|
|
|
|
for _ in range(num_runs):
|
2020-04-09 14:39:28 +02:00
|
|
|
|
val, err = \
|
2020-04-05 13:55:28 +02:00
|
|
|
|
monte_carlo.integrate_vegas(xs_pb_int, interval,
|
2020-04-09 14:39:28 +02:00
|
|
|
|
num_increments=10, alpha=1,
|
|
|
|
|
epsilon=1e-3, acumulate=False,
|
|
|
|
|
vegas_point_density=100).combined_result
|
2020-04-06 20:33:37 +02:00
|
|
|
|
|
2020-04-05 13:55:28 +02:00
|
|
|
|
if abs(xs_pb - val) <= err:
|
|
|
|
|
num_within += 1
|
|
|
|
|
num_within/num_runs
|
2020-04-04 22:20:48 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-05-01 11:30:37 +02:00
|
|
|
|
: 0.677
|
2020-04-04 22:20:48 +02:00
|
|
|
|
|
2020-04-05 12:30:38 +02:00
|
|
|
|
** Sampling and Analysis
|
2020-03-31 15:19:51 +02:00
|
|
|
|
Define the sample number.
|
2020-03-31 15:35:03 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-22 11:26:13 +02:00
|
|
|
|
sample_num = 1_000_000
|
2020-04-14 16:57:10 +02:00
|
|
|
|
tex_value(
|
|
|
|
|
sample_num, prefix="N = ", save=("results", "4imp-sample-size.tex"),
|
|
|
|
|
)
|
2020-03-31 15:19:51 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-04-22 11:26:13 +02:00
|
|
|
|
: \(N = 1000000\)
|
2020-04-14 16:57:10 +02:00
|
|
|
|
|
2020-04-02 15:55:07 +02:00
|
|
|
|
Let's define shortcuts for our distributions. The 2π are just there
|
|
|
|
|
for formal correctnes. Factors do not influecence the outcome.
|
2020-03-31 19:06:14 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-05 13:55:28 +02:00
|
|
|
|
def dist_cosθ(x):
|
2020-04-12 14:42:29 +02:00
|
|
|
|
return gev_to_pb(diff_xs_cosθ(x, charge, esp))
|
2020-04-02 15:55:07 +02:00
|
|
|
|
|
|
|
|
|
def dist_η(x):
|
2020-04-12 14:42:29 +02:00
|
|
|
|
return gev_to_pb(diff_xs_eta(x, charge, esp))
|
2020-03-31 19:06:14 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
|
2020-04-05 12:30:38 +02:00
|
|
|
|
*** Sampling the cosθ cross section
|
2020-04-02 15:55:07 +02:00
|
|
|
|
|
2020-03-31 19:06:14 +02:00
|
|
|
|
Now we monte-carlo sample our distribution. We observe that the efficiency his very bad!
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
|
|
|
|
cosθ_sample, cosθ_efficiency = \
|
2020-04-05 13:55:28 +02:00
|
|
|
|
monte_carlo.sample_unweighted_array(sample_num, dist_cosθ,
|
2020-04-22 11:26:13 +02:00
|
|
|
|
interval_cosθ, report_efficiency=True,
|
|
|
|
|
cache='cache/bare_cos_theta',
|
|
|
|
|
proc='auto')
|
2020-03-31 19:06:14 +02:00
|
|
|
|
cosθ_efficiency
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-05-01 11:30:37 +02:00
|
|
|
|
: 0.027352007278111257
|
2020-04-12 14:42:29 +02:00
|
|
|
|
|
|
|
|
|
Let's save that.
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
|
|
|
|
tex_value(
|
|
|
|
|
cosθ_efficiency * 100,
|
|
|
|
|
prefix=r"\mathfrak{e} = ",
|
|
|
|
|
suffix=r"\%",
|
|
|
|
|
save=("results", "naive_th_samp.tex"),
|
|
|
|
|
)
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
: \(\mathfrak{e} = 3\%\)
|
2020-03-31 19:06:14 +02:00
|
|
|
|
|
|
|
|
|
Our distribution has a lot of variance, as can be seen by plotting it.
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-05 13:55:28 +02:00
|
|
|
|
pts = np.linspace(*interval_cosθ, 100)
|
|
|
|
|
fig, ax = set_up_plot()
|
|
|
|
|
ax.plot(pts, dist_cosθ(pts))
|
|
|
|
|
ax.set_xlabel(r'$\cos\theta$')
|
|
|
|
|
ax.set_ylabel(r'$\frac{d\sigma}{d\Omega}$')
|
2020-03-31 19:06:14 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-04-03 14:05:30 +02:00
|
|
|
|
:RESULTS:
|
2020-04-05 13:55:28 +02:00
|
|
|
|
: Text(0, 0.5, '$\\frac{d\\sigma}{d\\Omega}$')
|
2020-04-12 14:42:29 +02:00
|
|
|
|
[[file:./.ob-jupyter/a9e1c809c0f72c09ab5e91022ecd407fcc833d95.png]]
|
2020-04-03 14:05:30 +02:00
|
|
|
|
:END:
|
2020-03-31 19:06:14 +02:00
|
|
|
|
|
|
|
|
|
We define a friendly and easy to integrate upper limit function.
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-12 14:42:29 +02:00
|
|
|
|
fig, ax = set_up_plot()
|
|
|
|
|
upper_limit = dist_cosθ(interval_cosθ[0]) / interval_cosθ[0] ** 2
|
2020-04-05 13:55:28 +02:00
|
|
|
|
upper_base = dist_cosθ(0)
|
2020-03-31 19:06:14 +02:00
|
|
|
|
|
2020-04-12 14:42:29 +02:00
|
|
|
|
|
2020-03-31 19:06:14 +02:00
|
|
|
|
def upper(x):
|
2020-04-12 14:42:29 +02:00
|
|
|
|
return upper_base + upper_limit * x ** 2
|
|
|
|
|
|
2020-03-31 19:06:14 +02:00
|
|
|
|
|
|
|
|
|
def upper_int(x):
|
2020-04-12 14:42:29 +02:00
|
|
|
|
return upper_base * x + upper_limit * x ** 3 / 3
|
2020-03-31 19:06:14 +02:00
|
|
|
|
|
2020-04-12 14:42:29 +02:00
|
|
|
|
|
|
|
|
|
ax.plot(pts, upper(pts), label="upper bound")
|
|
|
|
|
ax.plot(pts, dist_cosθ(pts), label=r"$f_{\cos\theta}$")
|
|
|
|
|
|
|
|
|
|
ax.legend(fontsize='small')
|
|
|
|
|
ax.set_xlabel(r"$\cos\theta$")
|
|
|
|
|
ax.set_ylabel(r"$\frac{d\sigma}{d\cos\theta}$ [pb]")
|
|
|
|
|
save_fig(fig, "upper_bound", "xs_sampling", size=(3, 2.5))
|
2020-03-31 19:06:14 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-04-12 14:42:29 +02:00
|
|
|
|
[[file:./.ob-jupyter/647593b36e5170280820c31c63b884cae0ebbee6.png]]
|
2020-03-31 19:06:14 +02:00
|
|
|
|
|
2020-03-30 20:26:10 +02:00
|
|
|
|
|
2020-03-31 19:06:14 +02:00
|
|
|
|
To increase our efficiency, we have to specify an upper bound. That is
|
|
|
|
|
at least a little bit better. The numeric inversion is horribly inefficent.
|
2020-03-31 15:35:03 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-22 11:26:13 +02:00
|
|
|
|
cosθ_sample_tuned, cosθ_efficiency_tuned = monte_carlo.sample_unweighted_array(
|
|
|
|
|
sample_num,
|
|
|
|
|
dist_cosθ,
|
|
|
|
|
interval_cosθ,
|
|
|
|
|
report_efficiency=True,
|
|
|
|
|
proc="auto",
|
|
|
|
|
cache="cache/bare_cos_theta_tuned",
|
|
|
|
|
upper_bound=[upper, upper_int],
|
|
|
|
|
)
|
2020-04-12 14:42:29 +02:00
|
|
|
|
cosθ_efficiency_tuned
|
2020-03-30 19:56:02 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-04-24 15:01:39 +02:00
|
|
|
|
: 0.07903687969629128
|
2020-04-06 19:17:48 +02:00
|
|
|
|
<<cosθ-bare-eff>>
|
2020-03-30 19:56:02 +02:00
|
|
|
|
|
2020-04-12 14:42:29 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
|
|
|
|
tex_value(
|
|
|
|
|
cosθ_efficiency_tuned * 100,
|
|
|
|
|
prefix=r"\mathfrak{e} = ",
|
|
|
|
|
suffix=r"\%",
|
|
|
|
|
save=("results", "tuned_th_samp.tex"),
|
|
|
|
|
)
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
: \(\mathfrak{e} = 8\%\)
|
|
|
|
|
|
|
|
|
|
# TODO: Looks fishy
|
2020-03-30 19:56:02 +02:00
|
|
|
|
Nice! And now draw some histograms.
|
|
|
|
|
|
|
|
|
|
We define an auxilliary method for convenience.
|
2020-04-05 12:30:38 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer :tangle tangled/plot_utils.py
|
2020-04-24 12:14:15 +02:00
|
|
|
|
import matplotlib.gridspec as gridspec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def draw_ratio_plot(histograms, normalize_to=1, **kwargs):
|
|
|
|
|
fig, (ax_hist, ax_ratio) = set_up_plot(
|
|
|
|
|
2, 1, sharex=True, gridspec_kw=dict(height_ratios=[3, 1], hspace=0), **kwargs
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
reference, edges = histograms[0]["hist"]
|
|
|
|
|
reference_error = np.sqrt(reference)
|
|
|
|
|
|
|
|
|
|
ref_int = hist_integral(histograms[0]["hist"])
|
|
|
|
|
reference = reference / ref_int
|
|
|
|
|
reference_error = reference_error / ref_int
|
|
|
|
|
|
|
|
|
|
for histogram in histograms:
|
|
|
|
|
heights, _ = histogram["hist"]
|
|
|
|
|
integral = hist_integral([heights, edges])
|
|
|
|
|
errors = np.sqrt(heights) / integral
|
|
|
|
|
heights = heights / integral
|
|
|
|
|
|
|
|
|
|
draw_histogram(
|
|
|
|
|
ax_hist,
|
|
|
|
|
[heights, edges],
|
|
|
|
|
errorbars=errors,
|
|
|
|
|
hist_kwargs=(
|
|
|
|
|
histogram["hist_kwargs"] if "hist_kwargs" in histogram else dict()
|
|
|
|
|
),
|
|
|
|
|
errorbar_kwargs=(
|
|
|
|
|
histogram["errorbar_kwargs"]
|
|
|
|
|
if "errorbar_kwargs" in histogram
|
|
|
|
|
else dict()
|
|
|
|
|
),
|
|
|
|
|
normalize_to=normalize_to,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
set_up_axis(ax_ratio, pimp_top=False)
|
2020-04-24 15:01:39 +02:00
|
|
|
|
ax_ratio.set_ylabel("ratio")
|
2020-04-24 12:14:15 +02:00
|
|
|
|
draw_histogram(
|
|
|
|
|
ax_ratio,
|
|
|
|
|
[heights / reference, edges],
|
|
|
|
|
errorbars=errors / reference,
|
|
|
|
|
hist_kwargs=(
|
|
|
|
|
histogram["hist_kwargs"] if "hist_kwargs" in histogram else dict()
|
|
|
|
|
),
|
|
|
|
|
errorbar_kwargs=(
|
|
|
|
|
histogram["errorbar_kwargs"]
|
|
|
|
|
if "errorbar_kwargs" in histogram
|
|
|
|
|
else dict()
|
|
|
|
|
),
|
|
|
|
|
normalize_to=None,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return fig, (ax_hist, ax_ratio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def hist_integral(hist):
|
|
|
|
|
heights, edges = hist
|
|
|
|
|
return heights @ (edges[1:] - edges[:-1])
|
|
|
|
|
|
|
|
|
|
|
2020-04-22 11:26:13 +02:00
|
|
|
|
def draw_histogram(
|
|
|
|
|
ax,
|
|
|
|
|
histogram,
|
|
|
|
|
errorbars=True,
|
|
|
|
|
hist_kwargs=dict(color="#1f77b4"),
|
2020-04-24 15:01:39 +02:00
|
|
|
|
errorbar_kwargs=dict(),
|
2020-04-22 11:26:13 +02:00
|
|
|
|
normalize_to=None,
|
|
|
|
|
):
|
|
|
|
|
"""Draws a histogram with optional errorbars using the step style.
|
|
|
|
|
|
|
|
|
|
:param ax: axis to draw on
|
|
|
|
|
:param histogram: an array of the form [heights, edges]
|
|
|
|
|
:param hist_kwargs: keyword args to pass to `ax.step`
|
|
|
|
|
:param errorbar_kwargs: keyword args to pass to `ax.errorbar`
|
|
|
|
|
:param normalize_to: if set, the histogram will be normalized to the value
|
|
|
|
|
:returns: the given axis
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
heights, edges = histogram
|
2020-04-14 16:57:10 +02:00
|
|
|
|
centers = (edges[1:] + edges[:-1]) / 2
|
2020-04-22 16:11:53 +02:00
|
|
|
|
deviations = (
|
|
|
|
|
(errorbars if isinstance(errorbars, (np.ndarray, list)) else np.sqrt(heights))
|
|
|
|
|
if errorbars is not False
|
|
|
|
|
else None
|
|
|
|
|
)
|
2020-04-22 11:26:13 +02:00
|
|
|
|
|
|
|
|
|
if normalize_to is not None:
|
2020-04-22 16:11:53 +02:00
|
|
|
|
integral = hist_integral(histogram)
|
2020-04-22 11:26:13 +02:00
|
|
|
|
heights = heights / integral * normalize_to
|
2020-04-22 16:11:53 +02:00
|
|
|
|
if errorbars is not False:
|
|
|
|
|
deviations = deviations / integral * normalize_to
|
|
|
|
|
|
2020-04-24 12:14:15 +02:00
|
|
|
|
hist_plot = ax.step(edges, [heights[0], *heights], **hist_kwargs)
|
|
|
|
|
|
2020-04-22 16:11:53 +02:00
|
|
|
|
if errorbars is not False:
|
2020-04-24 15:01:39 +02:00
|
|
|
|
if "color" not in errorbar_kwargs:
|
|
|
|
|
errorbar_kwargs["color"] = hist_plot[0].get_color()
|
|
|
|
|
|
|
|
|
|
ax.errorbar(centers, heights, deviations, linestyle="none", **errorbar_kwargs)
|
2020-04-22 11:26:13 +02:00
|
|
|
|
|
|
|
|
|
ax.set_xlim(*[edges[0], edges[-1]])
|
|
|
|
|
|
|
|
|
|
return ax
|
|
|
|
|
|
|
|
|
|
|
2020-04-24 12:14:15 +02:00
|
|
|
|
def draw_histo_auto(points, xlabel, bins=50, range=None, rethist=False, **kwargs):
|
2020-04-22 11:26:13 +02:00
|
|
|
|
"""Creates a histogram figure from sample points, normalized to unity.
|
|
|
|
|
|
|
|
|
|
:param points: samples
|
|
|
|
|
:param xlabel: label of the x axis
|
|
|
|
|
:param bins: number of bins
|
|
|
|
|
:param range: the range of the values
|
2020-04-22 16:11:53 +02:00
|
|
|
|
:param rethist: whether to return the histogram as third argument
|
2020-04-22 11:26:13 +02:00
|
|
|
|
:returns: figure, axis
|
|
|
|
|
"""
|
|
|
|
|
|
2020-04-24 12:14:15 +02:00
|
|
|
|
hist = np.histogram(points, bins, range=range, **kwargs)
|
|
|
|
|
fig, ax = set_up_plot()
|
|
|
|
|
draw_histogram(ax, hist, normalize_to=1)
|
2020-04-02 16:33:30 +02:00
|
|
|
|
|
2020-04-24 12:14:15 +02:00
|
|
|
|
ax.set_xlabel(xlabel)
|
|
|
|
|
ax.set_ylabel("Count")
|
2020-04-22 11:26:13 +02:00
|
|
|
|
|
2020-04-24 12:14:15 +02:00
|
|
|
|
return (fig, ax, hist) if rethist else (fig, ax)
|
2020-03-30 19:19:48 +02:00
|
|
|
|
#+end_src
|
2020-03-30 19:56:02 +02:00
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
|
|
|
|
|
The histogram for cosθ.
|
2020-03-31 15:35:03 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-24 12:14:15 +02:00
|
|
|
|
fig, _ = draw_histo_auto(cosθ_sample, r'$\cos\theta$')
|
|
|
|
|
save_fig(fig, 'histo_cos_theta', 'xs', size=(4,3))
|
|
|
|
|
hist_cosθ = np.histogram(cosθ_sample, bins=50, range=interval_cosθ)
|
2020-03-31 15:19:51 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-04-24 15:01:39 +02:00
|
|
|
|
[[file:./.ob-jupyter/dde553030cdb96c1f0a0b223abf9bdd4602119af.png]]
|
2020-03-31 15:19:51 +02:00
|
|
|
|
|
2020-04-05 12:30:38 +02:00
|
|
|
|
*** Observables
|
2020-04-02 15:55:07 +02:00
|
|
|
|
Now we define some utilities to draw real 4-momentum samples.
|
2020-03-31 15:35:03 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :tangle tangled/xs.py
|
2020-04-22 18:02:20 +02:00
|
|
|
|
@numpy_cache("momentum_cache")
|
2020-04-22 11:26:13 +02:00
|
|
|
|
def sample_momenta(sample_num, interval, charge, esp, seed=None, **kwargs):
|
2020-04-02 16:35:43 +02:00
|
|
|
|
"""Samples `sample_num` unweighted photon 4-momenta from the
|
2020-04-22 11:26:13 +02:00
|
|
|
|
cross-section. Superflous kwargs are passed on to
|
|
|
|
|
`sample_unweighted_array`.
|
2020-03-31 15:19:51 +02:00
|
|
|
|
|
|
|
|
|
:param sample_num: number of samples to take
|
|
|
|
|
:param interval: cosθ interval to sample from
|
|
|
|
|
:param charge: the charge of the quark
|
|
|
|
|
:param esp: center of mass energy
|
|
|
|
|
:param seed: the seed for the rng, optional, default is system
|
|
|
|
|
time
|
|
|
|
|
|
2020-04-02 16:35:43 +02:00
|
|
|
|
:returns: an array of 4 photon momenta
|
2020-04-02 16:33:30 +02:00
|
|
|
|
|
2020-03-31 15:19:51 +02:00
|
|
|
|
:rtype: np.ndarray
|
2020-04-22 11:26:13 +02:00
|
|
|
|
|
2020-03-31 15:19:51 +02:00
|
|
|
|
"""
|
2020-04-22 16:11:53 +02:00
|
|
|
|
|
2020-04-22 11:26:13 +02:00
|
|
|
|
cosθ_sample = monte_carlo.sample_unweighted_array(
|
|
|
|
|
sample_num, lambda x: diff_xs_cosθ(x, charge, esp), interval_cosθ, **kwargs
|
|
|
|
|
)
|
2020-04-29 14:55:41 +02:00
|
|
|
|
|
2020-03-31 15:19:51 +02:00
|
|
|
|
φ_sample = np.random.uniform(0, 1, sample_num)
|
|
|
|
|
|
2020-04-02 15:55:07 +02:00
|
|
|
|
def make_momentum(esp, cosθ, φ):
|
2020-04-22 11:26:13 +02:00
|
|
|
|
sinθ = np.sqrt(1 - cosθ ** 2)
|
2020-04-22 18:02:20 +02:00
|
|
|
|
return np.array([1, sinθ * np.cos(φ), sinθ * np.sin(φ), cosθ],) * esp / 2
|
2020-03-31 15:19:51 +02:00
|
|
|
|
|
2020-04-22 11:26:13 +02:00
|
|
|
|
momenta = np.array(
|
|
|
|
|
[make_momentum(esp, cosθ, φ) for cosθ, φ in np.array([cosθ_sample, φ_sample]).T]
|
|
|
|
|
)
|
2020-04-02 16:35:43 +02:00
|
|
|
|
return momenta
|
2020-03-31 15:19:51 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
|
2020-03-31 15:35:03 +02:00
|
|
|
|
To generate histograms of other obeservables, we have to define them
|
|
|
|
|
as functions on 4-impuleses. Using those to transform samples is
|
|
|
|
|
analogous to transforming the distribution itself.
|
2020-04-07 09:57:15 +02:00
|
|
|
|
#+begin_src jupyter-python :session obs :exports both :results raw drawer :tangle tangled/observables.py
|
2020-03-31 15:19:51 +02:00
|
|
|
|
"""This module defines some observables on arrays of 4-pulses."""
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
def p_t(p):
|
2020-04-02 15:55:07 +02:00
|
|
|
|
"""Transverse momentum
|
2020-03-31 15:19:51 +02:00
|
|
|
|
|
2020-04-02 16:35:43 +02:00
|
|
|
|
:param p: array of 4-momenta
|
2020-03-31 15:19:51 +02:00
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
return np.linalg.norm(p[:,1:3], axis=1)
|
|
|
|
|
|
|
|
|
|
def η(p):
|
|
|
|
|
"""Pseudo rapidity.
|
|
|
|
|
|
2020-04-02 16:35:43 +02:00
|
|
|
|
:param p: array of 4-momenta
|
2020-03-31 15:19:51 +02:00
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
return np.arccosh(np.linalg.norm(p[:,1:], axis=1)/p_t(p))*np.sign(p[:, 3])
|
2020-03-30 19:56:02 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
|
2020-04-07 09:57:15 +02:00
|
|
|
|
And import them.
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
|
|
|
|
%aimport tangled.observables
|
|
|
|
|
obs = tangled.observables
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-03-31 15:19:51 +02:00
|
|
|
|
|
|
|
|
|
Lets try it out.
|
2020-03-31 15:35:03 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-22 11:26:13 +02:00
|
|
|
|
momentum_sample = sample_momenta(
|
|
|
|
|
sample_num,
|
|
|
|
|
interval_cosθ,
|
|
|
|
|
charge,
|
|
|
|
|
esp,
|
2020-04-24 15:01:39 +02:00
|
|
|
|
proc='auto',
|
2020-04-22 11:26:13 +02:00
|
|
|
|
momentum_cache="cache/momenta_bare_cos_theta",
|
|
|
|
|
)
|
2020-04-02 15:55:07 +02:00
|
|
|
|
momentum_sample
|
2020-03-30 19:56:02 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-04-24 15:01:39 +02:00
|
|
|
|
: array([[100. , 16.04646249, 12.03145593, 97.96813313],
|
|
|
|
|
: [100. , 51.41640893, 11.55602144, 84.98712409],
|
|
|
|
|
: [100. , 40.75310071, 39.90715071, 82.13771426],
|
2020-04-22 11:26:13 +02:00
|
|
|
|
: ...,
|
2020-04-24 15:01:39 +02:00
|
|
|
|
: [100. , 20.83112183, 7.06626328, 97.55066523],
|
|
|
|
|
: [100. , 33.23340199, 1.86567636, -94.29772131],
|
|
|
|
|
: [100. , 32.9373831 , 47.67830405, -81.49790254]])
|
2020-04-14 10:24:57 +02:00
|
|
|
|
|
2020-03-30 20:26:10 +02:00
|
|
|
|
|
2020-03-31 15:19:51 +02:00
|
|
|
|
Now let's make a histogram of the η distribution.
|
2020-03-31 15:35:03 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-07 09:57:15 +02:00
|
|
|
|
η_sample = obs.η(momentum_sample)
|
2020-04-22 16:11:53 +02:00
|
|
|
|
fig, ax, hist_obs_η = draw_histo_auto(
|
2020-04-24 12:14:15 +02:00
|
|
|
|
η_sample, r"$eta$", range=interval_η, rethist=True
|
2020-04-22 16:11:53 +02:00
|
|
|
|
)
|
|
|
|
|
save_fig(fig, "histo_eta", "xs_sampling", size=[3, 3])
|
2020-03-31 15:19:51 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-04-24 15:01:39 +02:00
|
|
|
|
[[file:./.ob-jupyter/e2b510b9e200304cea662510e2bb1448cddf5055.png]]
|
2020-03-31 15:19:51 +02:00
|
|
|
|
|
|
|
|
|
|
2020-04-02 15:55:07 +02:00
|
|
|
|
And the same for the p_t (transverse momentum) distribution.
|
2020-03-31 15:35:03 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-07 09:57:15 +02:00
|
|
|
|
p_t_sample = obs.p_t(momentum_sample)
|
2020-04-22 16:11:53 +02:00
|
|
|
|
fig, ax, hist_obs_pt = draw_histo_auto(
|
2020-04-24 12:14:15 +02:00
|
|
|
|
p_t_sample, r"$p_T$ [GeV]", range=interval_pt, rethist=True
|
2020-04-22 16:11:53 +02:00
|
|
|
|
)
|
2020-04-14 16:57:10 +02:00
|
|
|
|
save_fig(fig, "histo_pt", "xs_sampling", size=[3, 3])
|
2020-04-02 15:55:07 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-04-24 15:01:39 +02:00
|
|
|
|
[[file:./.ob-jupyter/fba21aa6168c255a5523d865bace1ed6cfd2cab6.png]]
|
2020-04-02 15:55:07 +02:00
|
|
|
|
|
|
|
|
|
That looks somewhat fishy, but it isn't.
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
|
|
|
|
fig, ax = set_up_plot()
|
|
|
|
|
points = np.linspace(interval_pt[0], interval_pt[1] - .01, 1000)
|
|
|
|
|
ax.plot(points, gev_to_pb(diff_xs_p_t(points, charge, esp)))
|
|
|
|
|
ax.set_xlabel(r'$p_T$')
|
|
|
|
|
ax.set_xlim(interval_pt[0], interval_pt[1] + 1)
|
|
|
|
|
ax.set_ylim([0, gev_to_pb(diff_xs_p_t(interval_pt[1] -.01, charge, esp))])
|
|
|
|
|
ax.set_ylabel(r'$\frac{d\sigma}{dp_t}$ [pb]')
|
2020-04-14 16:57:10 +02:00
|
|
|
|
save_fig(fig, 'diff_xs_p_t', 'xs_sampling', size=[4, 2])
|
2020-04-02 15:55:07 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-04-14 16:57:10 +02:00
|
|
|
|
[[file:./.ob-jupyter/29724b8c1f2b0005a05f64f999cf95d248ee0082.png]]
|
2020-04-02 15:55:07 +02:00
|
|
|
|
this is strongly peaked at p_t=100GeV. (The jacobian goes like 1/x there!)
|
|
|
|
|
|
2020-04-05 12:30:38 +02:00
|
|
|
|
*** Sampling the η cross section
|
2020-04-02 16:33:30 +02:00
|
|
|
|
An again we see that the efficiency is way, way! better...
|
2020-04-02 15:55:07 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-14 16:57:10 +02:00
|
|
|
|
η_sample, η_efficiency = monte_carlo.sample_unweighted_array(
|
2020-04-24 12:14:15 +02:00
|
|
|
|
sample_num,
|
2020-04-22 11:26:13 +02:00
|
|
|
|
dist_η,
|
|
|
|
|
interval_η,
|
|
|
|
|
report_efficiency=True,
|
|
|
|
|
proc="auto",
|
2020-04-24 12:14:15 +02:00
|
|
|
|
cache="cache/sample_bare_eta",
|
2020-04-14 16:57:10 +02:00
|
|
|
|
)
|
|
|
|
|
tex_value(
|
|
|
|
|
η_efficiency * 100,
|
|
|
|
|
prefix=r"\mathfrak{e} = ",
|
|
|
|
|
suffix=r"\%",
|
|
|
|
|
save=("results", "eta_eff.tex"),
|
|
|
|
|
)
|
2020-04-02 15:55:07 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-04-22 11:26:13 +02:00
|
|
|
|
: \(\mathfrak{e} = 41\%\)
|
2020-04-06 19:17:48 +02:00
|
|
|
|
<<η-eff>>
|
2020-04-02 15:55:07 +02:00
|
|
|
|
|
|
|
|
|
Let's draw a histogram to compare with the previous results.
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-24 12:14:15 +02:00
|
|
|
|
η_hist = np.histogram(η_sample, bins=50)
|
|
|
|
|
fig, (ax_hist, ax_ratio) = draw_ratio_plot(
|
|
|
|
|
[
|
|
|
|
|
dict(hist=η_hist, hist_kwargs=dict(label=r"sampled from $d\sigma / d\eta$"),),
|
|
|
|
|
dict(
|
|
|
|
|
hist=hist_obs_η,
|
|
|
|
|
hist_kwargs=dict(
|
|
|
|
|
label=r"sampled from $d\sigma / d\cos\theta$", color="black"
|
|
|
|
|
),
|
|
|
|
|
),
|
|
|
|
|
],
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
ax_hist.legend(loc="upper center", fontsize="small")
|
|
|
|
|
ax_ratio.set_xlabel(r"$\eta$")
|
|
|
|
|
save_fig(fig, "comparison_eta", "xs_sampling", size=(4, 4))
|
2020-03-30 20:26:10 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-04-24 15:01:39 +02:00
|
|
|
|
[[file:./.ob-jupyter/931d0c4522606eb420d0fb674a918a79e6244ce2.png]]
|
2020-04-07 10:07:11 +02:00
|
|
|
|
|
2020-04-02 15:55:07 +02:00
|
|
|
|
Looks good to me :).
|
2020-04-07 10:07:11 +02:00
|
|
|
|
|
2020-04-05 12:34:51 +02:00
|
|
|
|
*** Sampling with =VEGAS=
|
2020-04-05 13:55:28 +02:00
|
|
|
|
To get the increments, we have to let =VEGAS= loose on our
|
|
|
|
|
distribution. We throw away the integral, but keep the increments.
|
|
|
|
|
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-12 14:42:29 +02:00
|
|
|
|
K = 10
|
|
|
|
|
increments = monte_carlo.integrate_vegas(
|
|
|
|
|
dist_cosθ, interval_cosθ, num_increments=K, alpha=1, increment_epsilon=0.001
|
|
|
|
|
).increment_borders
|
|
|
|
|
tex_value(
|
|
|
|
|
K, prefix=r"K = ", save=("results", "vegas_samp_num_increments.tex"),
|
|
|
|
|
)
|
2020-04-05 13:55:28 +02:00
|
|
|
|
increments
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-05-01 11:30:37 +02:00
|
|
|
|
: array([-0.9866143 , -0.96961793, -0.93102927, -0.83928851, -0.60522124,
|
|
|
|
|
: 0.00165114, 0.60381197, 0.83945077, 0.93141193, 0.9698008 ,
|
|
|
|
|
: 0.9866143 ])
|
2020-04-05 13:55:28 +02:00
|
|
|
|
|
|
|
|
|
Visualizing the increment borders gives us the information we want.
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
|
|
|
|
pts = np.linspace(*interval_cosθ, 100)
|
|
|
|
|
fig, ax = set_up_plot()
|
|
|
|
|
ax.plot(pts, dist_cosθ(pts))
|
|
|
|
|
ax.set_xlabel(r'$\cos\theta$')
|
|
|
|
|
ax.set_ylabel(r'$\frac{d\sigma}{d\Omega}$')
|
|
|
|
|
ax.set_xlim(*interval_cosθ)
|
|
|
|
|
plot_increments(ax, increments,
|
|
|
|
|
label='Increment Borderds', color='gray', linestyle='--')
|
|
|
|
|
ax.legend()
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
2020-05-01 11:30:37 +02:00
|
|
|
|
: <matplotlib.legend.Legend at 0x7f7205eb4340>
|
|
|
|
|
[[file:./.ob-jupyter/b4b1e7c332c55259afcda37c371f1edc4a56c0ea.png]]
|
2020-04-05 13:55:28 +02:00
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
We can now plot the reweighted distribution to observe the variance
|
|
|
|
|
reduction visually.
|
|
|
|
|
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
|
|
|
|
pts = np.linspace(*interval_cosθ, 1000)
|
|
|
|
|
fig, ax = set_up_plot()
|
2020-04-12 14:42:29 +02:00
|
|
|
|
ax.plot(pts, dist_cosθ(pts), label="Distribution")
|
|
|
|
|
plot_vegas_weighted_distribution(
|
|
|
|
|
ax, pts, dist_cosθ(pts), increments, label="Weighted Distribution"
|
|
|
|
|
)
|
|
|
|
|
ax.set_xlabel(r"$\cos\theta$")
|
|
|
|
|
ax.set_ylabel(r"$\frac{d\sigma}{d\cos\theta}$")
|
2020-04-05 13:55:28 +02:00
|
|
|
|
ax.set_xlim(*interval_cosθ)
|
2020-04-12 14:42:29 +02:00
|
|
|
|
plot_increments(
|
|
|
|
|
ax, increments, label="Increment Borderds", color="gray", linestyle="--"
|
|
|
|
|
)
|
|
|
|
|
ax.legend(fontsize="small")
|
|
|
|
|
save_fig(fig, "vegas_strat_dist", "xs_sampling", size=(3, 2.3))
|
2020-04-05 13:55:28 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-05-01 11:30:37 +02:00
|
|
|
|
[[file:./.ob-jupyter/b2f71eaa54629fa9e6f00976eccb567a71ff0f54.png]]
|
2020-04-05 13:55:28 +02:00
|
|
|
|
|
2020-04-06 19:17:48 +02:00
|
|
|
|
|
2020-04-12 14:42:29 +02:00
|
|
|
|
I am batman! Let's plot the weighting distribution.
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
|
|
|
|
pts = np.linspace(*interval_cosθ, 1000)
|
|
|
|
|
fig, ax = set_up_plot()
|
|
|
|
|
plot_stratified_rho(ax, pts, increments)
|
|
|
|
|
ax.set_xlabel(r"$\cos\theta$")
|
|
|
|
|
ax.set_ylabel(r"$\rho")
|
|
|
|
|
ax.set_xlim(*interval_cosθ)
|
|
|
|
|
save_fig(fig, "vegas_rho", "xs_sampling", size=(3, 2.3))
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-05-01 11:30:37 +02:00
|
|
|
|
[[file:./.ob-jupyter/4a8e255a72be03dc50b269e14143043b5d9472f5.png]]
|
2020-04-12 14:42:29 +02:00
|
|
|
|
|
2020-04-06 19:17:48 +02:00
|
|
|
|
Now, draw a sample and look at the efficiency.
|
|
|
|
|
|
2020-04-06 18:21:10 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-22 11:26:13 +02:00
|
|
|
|
cosθ_sample_strat, cosθ_efficiency_strat = monte_carlo.sample_unweighted_array(
|
|
|
|
|
sample_num,
|
|
|
|
|
dist_cosθ,
|
|
|
|
|
increment_borders=increments,
|
|
|
|
|
report_efficiency=True,
|
|
|
|
|
proc="auto",
|
|
|
|
|
cache="cache/sample_bare_cos_theta_vegas",
|
|
|
|
|
)
|
2020-04-06 18:21:10 +02:00
|
|
|
|
cosθ_efficiency_strat
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-04-24 15:01:39 +02:00
|
|
|
|
: 0.5875845864661654
|
2020-04-12 14:42:29 +02:00
|
|
|
|
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
|
|
|
|
tex_value(
|
|
|
|
|
cosθ_efficiency_strat * 100,
|
|
|
|
|
prefix=r"\mathfrak{e} = ",
|
|
|
|
|
suffix=r"\%",
|
|
|
|
|
save=("results", "strat_th_samp.tex"),
|
|
|
|
|
)
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-04-24 15:01:39 +02:00
|
|
|
|
: \(\mathfrak{e} = 59\%\)
|
2020-04-05 21:12:02 +02:00
|
|
|
|
|
2020-04-06 19:17:48 +02:00
|
|
|
|
If we compare that to [[cosθ-bare-eff]], we can see the improvement :P.
|
|
|
|
|
It is even better the [[η-eff]]. The histogram looks just the same.
|
|
|
|
|
|
2020-04-06 18:21:10 +02:00
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-22 11:26:13 +02:00
|
|
|
|
fig, _ = draw_histo_auto(cosθ_sample_strat, r'$\cos\theta$')
|
2020-04-06 18:21:10 +02:00
|
|
|
|
save_fig(fig, 'histo_cos_theta_strat', 'xs', size=(4,3))
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-04-24 15:01:39 +02:00
|
|
|
|
[[file:./.ob-jupyter/1d90af7d456726ad3780a203acc8938f1894f6b1.png]]
|
2020-04-20 10:19:39 +02:00
|
|
|
|
|
2020-04-15 16:55:14 +02:00
|
|
|
|
*** Some Histograms with Rivet
|
|
|
|
|
**** Init
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
|
|
|
|
import yoda
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2020-05-01 11:30:37 +02:00
|
|
|
|
: Welcome to JupyROOT 6.20/04
|
2020-04-15 16:55:14 +02:00
|
|
|
|
|
|
|
|
|
**** Plot the Histos
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer :tangle tangled/plot_utils.py
|
2020-04-22 16:11:53 +02:00
|
|
|
|
def yoda_to_numpy(histo):
|
2020-04-22 18:02:20 +02:00
|
|
|
|
histo.normalize(
|
|
|
|
|
histo.numEntries() * ((histo.xMax() - histo.xMin()) / histo.numBins())
|
|
|
|
|
)
|
2020-04-22 16:11:53 +02:00
|
|
|
|
edges = np.append(histo.xMins(), histo.xMax())
|
|
|
|
|
heights = histo.yVals().astype(int)
|
|
|
|
|
|
|
|
|
|
return heights, edges
|
2020-04-15 16:55:14 +02:00
|
|
|
|
|
2020-04-22 16:11:53 +02:00
|
|
|
|
|
|
|
|
|
def draw_yoda_histo_auto(h, xlabel, **kwargs):
|
2020-04-22 18:02:20 +02:00
|
|
|
|
hist = yoda_to_numpy(h)
|
2020-04-15 16:55:14 +02:00
|
|
|
|
fig, ax = set_up_plot()
|
2020-04-22 16:11:53 +02:00
|
|
|
|
draw_histogram(ax, hist, errorbars=True, normalize_to=1, **kwargs)
|
2020-04-15 16:55:14 +02:00
|
|
|
|
|
|
|
|
|
ax.set_xlabel(xlabel)
|
|
|
|
|
return fig, ax
|
2020-04-19 17:34:00 +02:00
|
|
|
|
#+end_src
|
2020-04-15 16:55:14 +02:00
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
|
|
|
|
|
#+begin_src jupyter-python :exports both :results raw drawer
|
2020-04-15 18:29:55 +02:00
|
|
|
|
yoda_file = yoda.read("../../runcards/qqgg/analysis/Analysis.yoda")
|
2020-04-22 16:11:53 +02:00
|
|
|
|
sherpa_histos = {
|
|
|
|
|
"pT": dict(reference=hist_obs_pt, label="$p_T$ [GeV]"),
|
|
|
|
|
"eta": dict(reference=hist_obs_η, label=r"$\eta$"),
|
|
|
|
|
"cos_theta": dict(reference=hist_cosθ, label=r"$\cos\theta$"),
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for key, sherpa_hist in sherpa_histos.items():
|
|
|
|
|
yoda_hist = yoda_to_numpy(yoda_file["/MC_DIPHOTON_SIMPLE/" + key])
|
|
|
|
|
label = sherpa_hist["label"]
|
|
|
|
|
fig, (ax_hist, ax_ratio) = draw_ratio_plot(
|
|
|
|
|
[
|
|
|
|
|
dict(
|
|
|
|
|
hist=yoda_hist,
|
|
|
|
|
hist_kwargs=dict(
|
2020-04-22 18:02:20 +02:00
|
|
|
|
label="Sherpa Reference"
|
2020-04-22 16:11:53 +02:00
|
|
|
|
),
|
2020-04-24 12:14:15 +02:00
|
|
|
|
errorbars=True,
|
2020-04-22 16:11:53 +02:00
|
|
|
|
),
|
2020-04-22 18:02:20 +02:00
|
|
|
|
dict(
|
|
|
|
|
hist=sherpa_hist["reference"],
|
|
|
|
|
hist_kwargs=dict(label="Own Implementation"),
|
|
|
|
|
),
|
2020-04-22 16:11:53 +02:00
|
|
|
|
],
|
2020-04-16 18:37:37 +02:00
|
|
|
|
)
|
2020-04-22 18:02:20 +02:00
|
|
|
|
ax_ratio.set_xlabel(label)
|
2020-04-24 12:14:15 +02:00
|
|
|
|
ax_hist.legend(fontsize='small')
|
2020-04-22 18:02:20 +02:00
|
|
|
|
save_fig(fig, "histo_sherpa_" + key, "xs_sampling", size=(4, 3.5))
|
2020-04-15 16:55:14 +02:00
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
2020-05-01 11:30:37 +02:00
|
|
|
|
[[file:./.ob-jupyter/29fb6b4200f4f70eb8cbb96b498114caa819d146.png]]
|
|
|
|
|
[[file:./.ob-jupyter/b86e1bcd4461345fb9bfe7114c2626bb966c9d8b.png]]
|
|
|
|
|
[[file:./.ob-jupyter/f8c1f07465d43e58bace241d748c45e21acd2852.png]]
|
2020-04-15 16:55:14 +02:00
|
|
|
|
:END:
|