ray/examples/resnet/resnet_model.py

317 lines
12 KiB
Python

"""ResNet model with most of the code taken from
https://github.com/tensorflow/models/tree/master/resnet.
Related papers:
https://arxiv.org/pdf/1603.05027v2.pdf
https://arxiv.org/pdf/1512.03385v1.pdf
https://arxiv.org/pdf/1605.07146v1.pdf
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import namedtuple
import numpy as np
import tensorflow as tf
from tensorflow.python.training import moving_averages
import ray
import ray.experimental.tf_utils
HParams = namedtuple(
'HParams', 'batch_size, num_classes, min_lrn_rate, lrn_rate, '
'num_residual_units, use_bottleneck, weight_decay_rate, '
'relu_leakiness, optimizer, num_gpus')
class ResNet(object):
"""ResNet model."""
def __init__(self, hps, images, labels, mode):
"""ResNet constructor.
Args:
hps: Hyperparameters.
images: Batches of images of size [batch_size, image_size,
image_size, 3].
labels: Batches of labels of size [batch_size, num_classes].
mode: One of 'train' and 'eval'.
"""
self.hps = hps
self._images = images
self.labels = labels
self.mode = mode
self._extra_train_ops = []
def build_graph(self):
"""Build a whole graph for the model."""
self.global_step = tf.Variable(0, trainable=False)
self._build_model()
if self.mode == 'train':
self._build_train_op()
else:
# Additional initialization for the test network.
self.variables = ray.experimental.tf_utils.TensorFlowVariables(
self.cost)
self.summaries = tf.summary.merge_all()
def _stride_arr(self, stride):
"""Map a stride scalar to the stride array for tf.nn.conv2d."""
return [1, stride, stride, 1]
def _build_model(self):
"""Build the core model within the graph."""
with tf.variable_scope('init'):
x = self._conv('init_conv', self._images, 3, 3, 16,
self._stride_arr(1))
strides = [1, 2, 2]
activate_before_residual = [True, False, False]
if self.hps.use_bottleneck:
res_func = self._bottleneck_residual
filters = [16, 64, 128, 256]
else:
res_func = self._residual
filters = [16, 16, 32, 64]
with tf.variable_scope('unit_1_0'):
x = res_func(x, filters[0], filters[1], self._stride_arr(
strides[0]), activate_before_residual[0])
for i in range(1, self.hps.num_residual_units):
with tf.variable_scope('unit_1_%d' % i):
x = res_func(x, filters[1], filters[1], self._stride_arr(1),
False)
with tf.variable_scope('unit_2_0'):
x = res_func(x, filters[1], filters[2], self._stride_arr(
strides[1]), activate_before_residual[1])
for i in range(1, self.hps.num_residual_units):
with tf.variable_scope('unit_2_%d' % i):
x = res_func(x, filters[2], filters[2], self._stride_arr(1),
False)
with tf.variable_scope('unit_3_0'):
x = res_func(x, filters[2], filters[3], self._stride_arr(
strides[2]), activate_before_residual[2])
for i in range(1, self.hps.num_residual_units):
with tf.variable_scope('unit_3_%d' % i):
x = res_func(x, filters[3], filters[3], self._stride_arr(1),
False)
with tf.variable_scope('unit_last'):
x = self._batch_norm('final_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
x = self._global_avg_pool(x)
with tf.variable_scope('logit'):
logits = self._fully_connected(x, self.hps.num_classes)
self.predictions = tf.nn.softmax(logits)
with tf.variable_scope('costs'):
xent = tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=self.labels)
self.cost = tf.reduce_mean(xent, name='xent')
self.cost += self._decay()
if self.mode == 'eval':
tf.summary.scalar('cost', self.cost)
def _build_train_op(self):
"""Build training specific ops for the graph."""
num_gpus = self.hps.num_gpus if self.hps.num_gpus != 0 else 1
# The learning rate schedule is dependent on the number of gpus.
boundaries = [int(20000 * i / np.sqrt(num_gpus)) for i in range(2, 5)]
values = [0.1, 0.01, 0.001, 0.0001]
self.lrn_rate = tf.train.piecewise_constant(self.global_step,
boundaries, values)
tf.summary.scalar('learning rate', self.lrn_rate)
if self.hps.optimizer == 'sgd':
optimizer = tf.train.GradientDescentOptimizer(self.lrn_rate)
elif self.hps.optimizer == 'mom':
optimizer = tf.train.MomentumOptimizer(self.lrn_rate, 0.9)
apply_op = optimizer.minimize(self.cost, global_step=self.global_step)
train_ops = [apply_op] + self._extra_train_ops
self.train_op = tf.group(*train_ops)
self.variables = ray.experimental.tf_utils.TensorFlowVariables(
self.train_op)
def _batch_norm(self, name, x):
"""Batch normalization."""
with tf.variable_scope(name):
params_shape = [x.get_shape()[-1]]
beta = tf.get_variable(
'beta',
params_shape,
tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32))
gamma = tf.get_variable(
'gamma',
params_shape,
tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32))
if self.mode == 'train':
mean, variance = tf.nn.moments(x, [0, 1, 2], name='moments')
moving_mean = tf.get_variable(
'moving_mean',
params_shape,
tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32),
trainable=False)
moving_variance = tf.get_variable(
'moving_variance',
params_shape,
tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32),
trainable=False)
self._extra_train_ops.append(
moving_averages.assign_moving_average(
moving_mean, mean, 0.9))
self._extra_train_ops.append(
moving_averages.assign_moving_average(
moving_variance, variance, 0.9))
else:
mean = tf.get_variable(
'moving_mean',
params_shape,
tf.float32,
initializer=tf.constant_initializer(0.0, tf.float32),
trainable=False)
variance = tf.get_variable(
'moving_variance',
params_shape,
tf.float32,
initializer=tf.constant_initializer(1.0, tf.float32),
trainable=False)
tf.summary.histogram(mean.op.name, mean)
tf.summary.histogram(variance.op.name, variance)
# elipson used to be 1e-5. Maybe 0.001 solves NaN problem in deeper
# net.
y = tf.nn.batch_normalization(x, mean, variance, beta, gamma,
0.001)
y.set_shape(x.get_shape())
return y
def _residual(self,
x,
in_filter,
out_filter,
stride,
activate_before_residual=False):
"""Residual unit with 2 sub layers."""
if activate_before_residual:
with tf.variable_scope('shared_activation'):
x = self._batch_norm('init_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
orig_x = x
else:
with tf.variable_scope('residual_only_activation'):
orig_x = x
x = self._batch_norm('init_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
with tf.variable_scope('sub1'):
x = self._conv('conv1', x, 3, in_filter, out_filter, stride)
with tf.variable_scope('sub2'):
x = self._batch_norm('bn2', x)
x = self._relu(x, self.hps.relu_leakiness)
x = self._conv('conv2', x, 3, out_filter, out_filter, [1, 1, 1, 1])
with tf.variable_scope('sub_add'):
if in_filter != out_filter:
orig_x = tf.nn.avg_pool(orig_x, stride, stride, 'VALID')
orig_x = tf.pad(
orig_x,
[[0, 0], [0, 0], [0, 0], [(out_filter - in_filter) // 2,
(out_filter - in_filter) // 2]])
x += orig_x
return x
def _bottleneck_residual(self,
x,
in_filter,
out_filter,
stride,
activate_before_residual=False):
"""Bottleneck residual unit with 3 sub layers."""
if activate_before_residual:
with tf.variable_scope('common_bn_relu'):
x = self._batch_norm('init_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
orig_x = x
else:
with tf.variable_scope('residual_bn_relu'):
orig_x = x
x = self._batch_norm('init_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
with tf.variable_scope('sub1'):
x = self._conv('conv1', x, 1, in_filter, out_filter / 4, stride)
with tf.variable_scope('sub2'):
x = self._batch_norm('bn2', x)
x = self._relu(x, self.hps.relu_leakiness)
x = self._conv('conv2', x, 3, out_filter / 4, out_filter / 4,
[1, 1, 1, 1])
with tf.variable_scope('sub3'):
x = self._batch_norm('bn3', x)
x = self._relu(x, self.hps.relu_leakiness)
x = self._conv('conv3', x, 1, out_filter / 4, out_filter,
[1, 1, 1, 1])
with tf.variable_scope('sub_add'):
if in_filter != out_filter:
orig_x = self._conv('project', orig_x, 1, in_filter,
out_filter, stride)
x += orig_x
return x
def _decay(self):
"""L2 weight decay loss."""
costs = []
for var in tf.trainable_variables():
if var.op.name.find(r'DW') > 0:
costs.append(tf.nn.l2_loss(var))
return tf.multiply(self.hps.weight_decay_rate, tf.add_n(costs))
def _conv(self, name, x, filter_size, in_filters, out_filters, strides):
"""Convolution."""
with tf.variable_scope(name):
n = filter_size * filter_size * out_filters
kernel = tf.get_variable(
'DW', [filter_size, filter_size, in_filters, out_filters],
tf.float32,
initializer=tf.random_normal_initializer(
stddev=np.sqrt(2.0 / n)))
return tf.nn.conv2d(x, kernel, strides, padding='SAME')
def _relu(self, x, leakiness=0.0):
"""Relu, with optional leaky support."""
return tf.where(tf.less(x, 0.0), leakiness * x, x, name='leaky_relu')
def _fully_connected(self, x, out_dim):
"""FullyConnected layer for final output."""
x = tf.reshape(x, [self.hps.batch_size, -1])
w = tf.get_variable(
'DW', [x.get_shape()[1], out_dim],
initializer=tf.uniform_unit_scaling_initializer(factor=1.0))
b = tf.get_variable(
'biases', [out_dim], initializer=tf.constant_initializer())
return tf.nn.xw_plus_b(x, w, b)
def _global_avg_pool(self, x):
assert x.get_shape().ndims == 4
return tf.reduce_mean(x, [1, 2])