"""ResNet model with most of the code taken from https://github.com/tensorflow/models/tree/master/resnet. Related papers: https://arxiv.org/pdf/1603.05027v2.pdf https://arxiv.org/pdf/1512.03385v1.pdf https://arxiv.org/pdf/1605.07146v1.pdf """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import namedtuple import numpy as np import tensorflow as tf from tensorflow.python.training import moving_averages import ray import ray.experimental.tf_utils HParams = namedtuple( 'HParams', 'batch_size, num_classes, min_lrn_rate, lrn_rate, ' 'num_residual_units, use_bottleneck, weight_decay_rate, ' 'relu_leakiness, optimizer, num_gpus') class ResNet(object): """ResNet model.""" def __init__(self, hps, images, labels, mode): """ResNet constructor. Args: hps: Hyperparameters. images: Batches of images of size [batch_size, image_size, image_size, 3]. labels: Batches of labels of size [batch_size, num_classes]. mode: One of 'train' and 'eval'. """ self.hps = hps self._images = images self.labels = labels self.mode = mode self._extra_train_ops = [] def build_graph(self): """Build a whole graph for the model.""" self.global_step = tf.Variable(0, trainable=False) self._build_model() if self.mode == 'train': self._build_train_op() else: # Additional initialization for the test network. self.variables = ray.experimental.tf_utils.TensorFlowVariables( self.cost) self.summaries = tf.summary.merge_all() def _stride_arr(self, stride): """Map a stride scalar to the stride array for tf.nn.conv2d.""" return [1, stride, stride, 1] def _build_model(self): """Build the core model within the graph.""" with tf.variable_scope('init'): x = self._conv('init_conv', self._images, 3, 3, 16, self._stride_arr(1)) strides = [1, 2, 2] activate_before_residual = [True, False, False] if self.hps.use_bottleneck: res_func = self._bottleneck_residual filters = [16, 64, 128, 256] else: res_func = self._residual filters = [16, 16, 32, 64] with tf.variable_scope('unit_1_0'): x = res_func(x, filters[0], filters[1], self._stride_arr( strides[0]), activate_before_residual[0]) for i in range(1, self.hps.num_residual_units): with tf.variable_scope('unit_1_%d' % i): x = res_func(x, filters[1], filters[1], self._stride_arr(1), False) with tf.variable_scope('unit_2_0'): x = res_func(x, filters[1], filters[2], self._stride_arr( strides[1]), activate_before_residual[1]) for i in range(1, self.hps.num_residual_units): with tf.variable_scope('unit_2_%d' % i): x = res_func(x, filters[2], filters[2], self._stride_arr(1), False) with tf.variable_scope('unit_3_0'): x = res_func(x, filters[2], filters[3], self._stride_arr( strides[2]), activate_before_residual[2]) for i in range(1, self.hps.num_residual_units): with tf.variable_scope('unit_3_%d' % i): x = res_func(x, filters[3], filters[3], self._stride_arr(1), False) with tf.variable_scope('unit_last'): x = self._batch_norm('final_bn', x) x = self._relu(x, self.hps.relu_leakiness) x = self._global_avg_pool(x) with tf.variable_scope('logit'): logits = self._fully_connected(x, self.hps.num_classes) self.predictions = tf.nn.softmax(logits) with tf.variable_scope('costs'): xent = tf.nn.softmax_cross_entropy_with_logits( logits=logits, labels=self.labels) self.cost = tf.reduce_mean(xent, name='xent') self.cost += self._decay() if self.mode == 'eval': tf.summary.scalar('cost', self.cost) def _build_train_op(self): """Build training specific ops for the graph.""" num_gpus = self.hps.num_gpus if self.hps.num_gpus != 0 else 1 # The learning rate schedule is dependent on the number of gpus. boundaries = [int(20000 * i / np.sqrt(num_gpus)) for i in range(2, 5)] values = [0.1, 0.01, 0.001, 0.0001] self.lrn_rate = tf.train.piecewise_constant(self.global_step, boundaries, values) tf.summary.scalar('learning rate', self.lrn_rate) if self.hps.optimizer == 'sgd': optimizer = tf.train.GradientDescentOptimizer(self.lrn_rate) elif self.hps.optimizer == 'mom': optimizer = tf.train.MomentumOptimizer(self.lrn_rate, 0.9) apply_op = optimizer.minimize(self.cost, global_step=self.global_step) train_ops = [apply_op] + self._extra_train_ops self.train_op = tf.group(*train_ops) self.variables = ray.experimental.tf_utils.TensorFlowVariables( self.train_op) def _batch_norm(self, name, x): """Batch normalization.""" with tf.variable_scope(name): params_shape = [x.get_shape()[-1]] beta = tf.get_variable( 'beta', params_shape, tf.float32, initializer=tf.constant_initializer(0.0, tf.float32)) gamma = tf.get_variable( 'gamma', params_shape, tf.float32, initializer=tf.constant_initializer(1.0, tf.float32)) if self.mode == 'train': mean, variance = tf.nn.moments(x, [0, 1, 2], name='moments') moving_mean = tf.get_variable( 'moving_mean', params_shape, tf.float32, initializer=tf.constant_initializer(0.0, tf.float32), trainable=False) moving_variance = tf.get_variable( 'moving_variance', params_shape, tf.float32, initializer=tf.constant_initializer(1.0, tf.float32), trainable=False) self._extra_train_ops.append( moving_averages.assign_moving_average( moving_mean, mean, 0.9)) self._extra_train_ops.append( moving_averages.assign_moving_average( moving_variance, variance, 0.9)) else: mean = tf.get_variable( 'moving_mean', params_shape, tf.float32, initializer=tf.constant_initializer(0.0, tf.float32), trainable=False) variance = tf.get_variable( 'moving_variance', params_shape, tf.float32, initializer=tf.constant_initializer(1.0, tf.float32), trainable=False) tf.summary.histogram(mean.op.name, mean) tf.summary.histogram(variance.op.name, variance) # elipson used to be 1e-5. Maybe 0.001 solves NaN problem in deeper # net. y = tf.nn.batch_normalization(x, mean, variance, beta, gamma, 0.001) y.set_shape(x.get_shape()) return y def _residual(self, x, in_filter, out_filter, stride, activate_before_residual=False): """Residual unit with 2 sub layers.""" if activate_before_residual: with tf.variable_scope('shared_activation'): x = self._batch_norm('init_bn', x) x = self._relu(x, self.hps.relu_leakiness) orig_x = x else: with tf.variable_scope('residual_only_activation'): orig_x = x x = self._batch_norm('init_bn', x) x = self._relu(x, self.hps.relu_leakiness) with tf.variable_scope('sub1'): x = self._conv('conv1', x, 3, in_filter, out_filter, stride) with tf.variable_scope('sub2'): x = self._batch_norm('bn2', x) x = self._relu(x, self.hps.relu_leakiness) x = self._conv('conv2', x, 3, out_filter, out_filter, [1, 1, 1, 1]) with tf.variable_scope('sub_add'): if in_filter != out_filter: orig_x = tf.nn.avg_pool(orig_x, stride, stride, 'VALID') orig_x = tf.pad( orig_x, [[0, 0], [0, 0], [0, 0], [(out_filter - in_filter) // 2, (out_filter - in_filter) // 2]]) x += orig_x return x def _bottleneck_residual(self, x, in_filter, out_filter, stride, activate_before_residual=False): """Bottleneck residual unit with 3 sub layers.""" if activate_before_residual: with tf.variable_scope('common_bn_relu'): x = self._batch_norm('init_bn', x) x = self._relu(x, self.hps.relu_leakiness) orig_x = x else: with tf.variable_scope('residual_bn_relu'): orig_x = x x = self._batch_norm('init_bn', x) x = self._relu(x, self.hps.relu_leakiness) with tf.variable_scope('sub1'): x = self._conv('conv1', x, 1, in_filter, out_filter / 4, stride) with tf.variable_scope('sub2'): x = self._batch_norm('bn2', x) x = self._relu(x, self.hps.relu_leakiness) x = self._conv('conv2', x, 3, out_filter / 4, out_filter / 4, [1, 1, 1, 1]) with tf.variable_scope('sub3'): x = self._batch_norm('bn3', x) x = self._relu(x, self.hps.relu_leakiness) x = self._conv('conv3', x, 1, out_filter / 4, out_filter, [1, 1, 1, 1]) with tf.variable_scope('sub_add'): if in_filter != out_filter: orig_x = self._conv('project', orig_x, 1, in_filter, out_filter, stride) x += orig_x return x def _decay(self): """L2 weight decay loss.""" costs = [] for var in tf.trainable_variables(): if var.op.name.find(r'DW') > 0: costs.append(tf.nn.l2_loss(var)) return tf.multiply(self.hps.weight_decay_rate, tf.add_n(costs)) def _conv(self, name, x, filter_size, in_filters, out_filters, strides): """Convolution.""" with tf.variable_scope(name): n = filter_size * filter_size * out_filters kernel = tf.get_variable( 'DW', [filter_size, filter_size, in_filters, out_filters], tf.float32, initializer=tf.random_normal_initializer( stddev=np.sqrt(2.0 / n))) return tf.nn.conv2d(x, kernel, strides, padding='SAME') def _relu(self, x, leakiness=0.0): """Relu, with optional leaky support.""" return tf.where(tf.less(x, 0.0), leakiness * x, x, name='leaky_relu') def _fully_connected(self, x, out_dim): """FullyConnected layer for final output.""" x = tf.reshape(x, [self.hps.batch_size, -1]) w = tf.get_variable( 'DW', [x.get_shape()[1], out_dim], initializer=tf.uniform_unit_scaling_initializer(factor=1.0)) b = tf.get_variable( 'biases', [out_dim], initializer=tf.constant_initializer()) return tf.nn.xw_plus_b(x, w, b) def _global_avg_pool(self, x): assert x.get_shape().ndims == 4 return tf.reduce_mean(x, [1, 2])