ray/release/long_running_tests/workloads/pbt.py
Balaji Veeramani 7f1bacc7dc
[CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes.
2022-01-29 18:41:57 -08:00

65 lines
1.6 KiB
Python

# This workload tests running PBT
import ray
from ray.tune import run_experiments
from ray.tune.schedulers import PopulationBasedTraining
from ray.cluster_utils import Cluster
from ray.tune.utils.release_test_util import ProgressCallback
num_redis_shards = 5
redis_max_memory = 10 ** 8
object_store_memory = 10 ** 8
num_nodes = 3
message = (
"Make sure there is enough memory on this machine to run this "
"workload. We divide the system memory by 2 to provide a buffer."
)
assert (
num_nodes * object_store_memory + num_redis_shards * redis_max_memory
< ray._private.utils.get_system_memory() / 2
), message
# Simulate a cluster on one machine.
cluster = Cluster()
for i in range(num_nodes):
cluster.add_node(
redis_port=6379 if i == 0 else None,
num_redis_shards=num_redis_shards if i == 0 else None,
num_cpus=10,
num_gpus=0,
resources={str(i): 2},
object_store_memory=object_store_memory,
redis_max_memory=redis_max_memory,
dashboard_host="0.0.0.0",
)
ray.init(address=cluster.address)
# Run the workload.
pbt = PopulationBasedTraining(
time_attr="training_iteration",
metric="episode_reward_mean",
mode="max",
perturbation_interval=10,
hyperparam_mutations={
"lr": [0.1, 0.01, 0.001, 0.0001],
},
)
run_experiments(
{
"pbt_test": {
"run": "PG",
"env": "CartPole-v0",
"num_samples": 8,
"config": {
"lr": 0.01,
},
}
},
callbacks=[ProgressCallback()],
scheduler=pbt,
verbose=False,
)