# This workload tests running PBT import ray from ray.tune import run_experiments from ray.tune.schedulers import PopulationBasedTraining from ray.cluster_utils import Cluster from ray.tune.utils.release_test_util import ProgressCallback num_redis_shards = 5 redis_max_memory = 10 ** 8 object_store_memory = 10 ** 8 num_nodes = 3 message = ( "Make sure there is enough memory on this machine to run this " "workload. We divide the system memory by 2 to provide a buffer." ) assert ( num_nodes * object_store_memory + num_redis_shards * redis_max_memory < ray._private.utils.get_system_memory() / 2 ), message # Simulate a cluster on one machine. cluster = Cluster() for i in range(num_nodes): cluster.add_node( redis_port=6379 if i == 0 else None, num_redis_shards=num_redis_shards if i == 0 else None, num_cpus=10, num_gpus=0, resources={str(i): 2}, object_store_memory=object_store_memory, redis_max_memory=redis_max_memory, dashboard_host="0.0.0.0", ) ray.init(address=cluster.address) # Run the workload. pbt = PopulationBasedTraining( time_attr="training_iteration", metric="episode_reward_mean", mode="max", perturbation_interval=10, hyperparam_mutations={ "lr": [0.1, 0.01, 0.001, 0.0001], }, ) run_experiments( { "pbt_test": { "run": "PG", "env": "CartPole-v0", "num_samples": 8, "config": { "lr": 0.01, }, } }, callbacks=[ProgressCallback()], scheduler=pbt, verbose=False, )