Merge branch 'master' of https://github.com/vale981/fpraktikum
6
tem/auswertung/.ein-hy.ipynb
Normal file
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"cells": [],
|
||||
"metadata": {},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
39
tem/auswertung/.ein-python.ipynb
Normal file
|
@ -0,0 +1,39 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"autoscroll": false,
|
||||
"collapsed": false,
|
||||
"ein.hycell": false,
|
||||
"ein.tags": "worksheet-0",
|
||||
"slideshow": {
|
||||
"slide_type": "-"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"argv": [
|
||||
"/usr/bin/python3",
|
||||
"-m",
|
||||
"ipykernel_launcher",
|
||||
"-f",
|
||||
"{connection_file}"
|
||||
],
|
||||
"display_name": "Python 3",
|
||||
"env": null,
|
||||
"interrupt_mode": "signal",
|
||||
"language": "python",
|
||||
"metadata": null,
|
||||
"name": "python3"
|
||||
},
|
||||
"name": "Untitled1.ipynb"
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
39
tem/auswertung/Untitled1.ipynb
Normal file
|
@ -0,0 +1,39 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"autoscroll": false,
|
||||
"collapsed": false,
|
||||
"ein.hycell": false,
|
||||
"ein.tags": "worksheet-0",
|
||||
"slideshow": {
|
||||
"slide_type": "-"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"argv": [
|
||||
"/usr/bin/python3",
|
||||
"-m",
|
||||
"ipykernel_launcher",
|
||||
"-f",
|
||||
"{connection_file}"
|
||||
],
|
||||
"display_name": "Python 3",
|
||||
"env": null,
|
||||
"interrupt_mode": "signal",
|
||||
"language": "python",
|
||||
"metadata": null,
|
||||
"name": "python3"
|
||||
},
|
||||
"name": "Untitled1.ipynb"
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
After Width: | Height: | Size: 12 KiB |
|
@ -133,7 +133,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 143,
|
||||
"execution_count": 147,
|
||||
"metadata": {
|
||||
"autoscroll": false,
|
||||
"collapsed": false,
|
||||
|
@ -148,15 +148,15 @@
|
|||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\\(\\sqrt{4}\\) & 0.4366 & 0.0031 & 0.0339 & 0.029 \\\\\n",
|
||||
"\\(\\sqrt{4}\\) & 0.3865 & 0.0025 & 0.0131 & 0.021 \\\\\n",
|
||||
"\\(\\sqrt{9}\\) & 0.3993 & 0.0018 & 0.0194 & 0.009 \\\\\n",
|
||||
"\\(\\sqrt{11}\\) & 0.3994 & 0.0016 & 0.0017 & 0.008 \\\\\n",
|
||||
"\\(\\sqrt{13}\\) & 0.4098 & 0.0015 & 0.0206 & 0.002 \\\\\n",
|
||||
"\\(\\sqrt{24}\\) & 0.4164 & 0.0012 & 0.0204 & 0.009 \\\\\n",
|
||||
"\\(\\sqrt{27}\\) & 0.4012 & 0.001 & 0.0106 & 0.007 \\\\\n",
|
||||
"\\(\\sqrt{30}\\) & 0.4014 & 0.001 & 0.0077 & 0.006 \\\\\n",
|
||||
"\\(\\sqrt{40}\\) & 0.4057 & 0.0009 & 0.0119 & 0.002 \\\\\n",
|
||||
"1 & \\(\\sqrt{4}\\) & 0.4366 & 0.0031 & 0.0339 & 0.029 \\\\\n",
|
||||
"2 & \\(\\sqrt{4}\\) & 0.3865 & 0.0025 & 0.0131 & 0.021 \\\\\n",
|
||||
"3 & \\(\\sqrt{9}\\) & 0.3993 & 0.0018 & 0.0194 & 0.009 \\\\\n",
|
||||
"4 & \\(\\sqrt{11}\\) & 0.3994 & 0.0016 & 0.0017 & 0.008 \\\\\n",
|
||||
"5 & \\(\\sqrt{13}\\) & 0.4098 & 0.0015 & 0.0206 & 0.002 \\\\\n",
|
||||
"6 & \\(\\sqrt{24}\\) & 0.4164 & 0.0012 & 0.0204 & 0.009 \\\\\n",
|
||||
"7 & \\(\\sqrt{27}\\) & 0.4012 & 0.001 & 0.0106 & 0.007 \\\\\n",
|
||||
"8 & \\(\\sqrt{30}\\) & 0.4014 & 0.001 & 0.0077 & 0.006 \\\\\n",
|
||||
"9 & \\(\\sqrt{40}\\) & 0.4057 & 0.0009 & 0.0119 & 0.002 \\\\\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
|
@ -212,7 +212,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 146,
|
||||
"execution_count": 148,
|
||||
"metadata": {
|
||||
"autoscroll": false,
|
||||
"collapsed": false,
|
||||
|
@ -227,14 +227,14 @@
|
|||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"5 & \\mqty{2 & 0 & 0} \\\\\n",
|
||||
"10 & \\mqty{2 & 2 & 1}, \\mqty{3 & 0 & 0} \\\\\n",
|
||||
"12 & \\mqty{3 & 1 & 1} \\\\\n",
|
||||
"14 & \\mqty{3 & 2 & 0} \\\\\n",
|
||||
"25 & \\mqty{4 & 2 & 2} \\\\\n",
|
||||
"28 & \\mqty{3 & 3 & 3}, \\mqty{5 & 1 & 1} \\\\\n",
|
||||
"31 & \\mqty{5 & 2 & 1} \\\\\n",
|
||||
"41 & \\mqty{6 & 2 & 0} \\\\\n",
|
||||
"4 & \\mqty{2 & 0 & 0} \\\\\n",
|
||||
"9 & \\mqty{2 & 2 & 1}, \\mqty{3 & 0 & 0} \\\\\n",
|
||||
"11 & \\mqty{3 & 1 & 1} \\\\\n",
|
||||
"13 & \\mqty{3 & 2 & 0} \\\\\n",
|
||||
"24 & \\mqty{4 & 2 & 2} \\\\\n",
|
||||
"27 & \\mqty{3 & 3 & 3}, \\mqty{5 & 1 & 1} \\\\\n",
|
||||
"30 & \\mqty{5 & 2 & 1} \\\\\n",
|
||||
"40 & \\mqty{6 & 2 & 0} \\\\\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 131,
|
||||
"metadata": {
|
||||
"autoscroll": false,
|
||||
"collapsed": false,
|
||||
|
@ -41,7 +41,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 117,
|
||||
"execution_count": 136,
|
||||
"metadata": {
|
||||
"autoscroll": false,
|
||||
"collapsed": false,
|
||||
|
@ -111,7 +111,64 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 118,
|
||||
"execution_count": 143,
|
||||
"metadata": {
|
||||
"autoscroll": false,
|
||||
"collapsed": false,
|
||||
"ein.hycell": false,
|
||||
"ein.tags": "worksheet-0",
|
||||
"slideshow": {
|
||||
"slide_type": "-"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"array([[0.20425 , 0.00654074, 0.0066303 ],\n [0.2447 , 0.00523259, 0.0056693 ],\n [0.23364286, 0.00373756, 0.00473438],\n [0.24145455, 0.0047569 , 0.00552135]])"
|
||||
]
|
||||
},
|
||||
"execution_count": 143,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"analyzed"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 144,
|
||||
"metadata": {
|
||||
"autoscroll": false,
|
||||
"collapsed": false,
|
||||
"ein.hycell": false,
|
||||
"ein.tags": "worksheet-0",
|
||||
"slideshow": {
|
||||
"slide_type": "-"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"1 & 0.204 & 0.007 & 0.007 \\\\\n",
|
||||
"2 & 0.245 & 0.005 & 0.006 \\\\\n",
|
||||
"3 & 0.2336 & 0.0037 & 0.0047 \\\\\n",
|
||||
"4 & 0.241 & 0.005 & 0.006 \\\\\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(generate_analysis_table(analyzed))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 145,
|
||||
"metadata": {
|
||||
"autoscroll": false,
|
||||
"collapsed": false,
|
||||
|
@ -128,7 +185,35 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 128,
|
||||
"execution_count": 147,
|
||||
"metadata": {
|
||||
"autoscroll": false,
|
||||
"collapsed": false,
|
||||
"ein.hycell": false,
|
||||
"ein.tags": "worksheet-0",
|
||||
"slideshow": {
|
||||
"slide_type": "-"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(array([4, 3, 3, 3]), array([[0.4085 , 0.01308148, 0.01326061],\n [0.42383283, 0.00906311, 0.00981952],\n [0.4046813 , 0.00647365, 0.00820019],\n [0.41821154, 0.00823919, 0.00956327]]), array([0.0007 , 0.01603283, 0.0031187 , 0.01041154]))"
|
||||
]
|
||||
},
|
||||
"execution_count": 147,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"hypothesis"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 146,
|
||||
"metadata": {
|
||||
"autoscroll": false,
|
||||
"collapsed": false,
|
||||
|
@ -214,7 +299,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 125,
|
||||
"execution_count": 152,
|
||||
"metadata": {
|
||||
"autoscroll": false,
|
||||
"collapsed": false,
|
||||
|
@ -229,8 +314,8 @@
|
|||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"3 & \\mqty{1 & 1 & 1} \\\\\n",
|
||||
"4 & \\mqty{2 & 0 & 0} \\\\\n",
|
||||
"\\(\\sqrt{3}\\) & \\(\\mqty(1 & 1 & 1)\\) \\\\\n",
|
||||
"\\(\\sqrt{4}\\) & \\(\\mqty(2 & 0 & 0)\\) \\\\\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
|
|
|
@ -118,4 +118,148 @@
|
|||
\caption{}
|
||||
\label{fig:gold_hires-profile_10}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_1.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_1}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_4.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_4}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_6.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_6}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_10.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_10}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_1.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_1}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_4.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_4}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_6.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_6}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_10.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_10}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_1.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_1}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_4.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_4}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_6.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_6}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_10.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_10}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_1.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_1}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_4.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_4}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_6.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_6}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_10.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_10}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_1.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_1}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_4.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_4}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_6.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_6}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_10.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_10}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_1.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_1}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_4.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_4}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_6.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_6}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}[H]\centering
|
||||
\input{../auswertung/figs/gold_hires/profile_10.pgf}
|
||||
\caption{}
|
||||
\label{fig:gold_hires-profile_10}
|
||||
\end{figure}
|
||||
|
40
tem/auswertung/test.org
Normal file
|
@ -0,0 +1,40 @@
|
|||
|
||||
thesnht
|
||||
|
||||
|
||||
|
||||
#+BEGIN_SRC emacs-lisp :results output :exports both
|
||||
(princ (concat (format "Emacs version: %s\n" (emacs-version))
|
||||
(format "org version: %s\n" (org-version))))
|
||||
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
: Emacs version: GNU Emacs 26.3 (build 1, x86_64-pc-linux-gnu, GTK+ Version 3.24.10)
|
||||
: of 2019-08-29
|
||||
: org version: 9.1.9
|
||||
|
||||
#+NAME: 2eb6a65a-ca91-45f6-a96e-8f16c3d222d2
|
||||
#+BEGIN_SRC ein-python :session localhost :results raw drawer
|
||||
import numpy, math, matplotlib.pyplot as plt
|
||||
%matplotlib inline
|
||||
x = numpy.linspace(0, 2*math.pi)
|
||||
plt.plot(x, numpy.sin(x))
|
||||
print('hi')
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS: 2eb6a65a-ca91-45f6-a96e-8f16c3d222d2
|
||||
:RESULTS:
|
||||
[<matplotlib.lines.Line2D at 0x7fd67e31f8b0>]
|
||||
[[file:ein-images/ob-ein-e5a882ae75bd4a3a40303cdc25c0ac76.png]]
|
||||
:END:
|
||||
|
||||
#BEGIN_SRC ein-python
|
||||
|
||||
#+END_SRC
|
||||
|
||||
|
||||
#+NAME: d3e8af2d-eb61-474e-b075-fdb5d5b5849d
|
||||
#+BEGIN_SRC ein-hy :session localhost :results raw drawer
|
||||
(print "hi")
|
||||
#+END_SRC
|
5
tem/auswertung/utihy.hy
Normal file
|
@ -0,0 +1,5 @@
|
|||
(import [numpy :as np])
|
||||
(defn normalize [array]
|
||||
(let [tmp (.copy array)]
|
||||
(setv tmp (- tmp (.min tmp)))
|
||||
(/ tmp (.max tmp))))
|
|
@ -223,9 +223,9 @@ def generate_miller_table(squares):
|
|||
out = ''
|
||||
|
||||
for i, ind_list in zip(squares, inds):
|
||||
out += f'{i} & '
|
||||
out += r'\(\sqrt{' + str(i) + '}\) & '
|
||||
for ind in ind_list:
|
||||
out += r'\mqty{' + ' & '.join(ind.astype(str)) + '}, '
|
||||
out += r'\(\mqty(' + ' & '.join(ind.astype(str)) + r')\), '
|
||||
out = out[:-2]
|
||||
|
||||
out += r' \\' + '\n'
|
||||
|
@ -242,6 +242,14 @@ def evaluate_hypothesis(analyzed, maximum=10, gold=.4078):
|
|||
mindiff = np.argmin(diff, axis=1)
|
||||
return squared_ds[mindiff], analyzed[:]*ds[mindiff,None], diff.min(axis=1)
|
||||
|
||||
def generate_analysis_table(analyzed):
|
||||
out = ''
|
||||
|
||||
for i, val in enumerate(analyzed):
|
||||
val = np.array(scientific_round(*val))
|
||||
out += f'{i + 1} & ' + ' & '.join(val.astype(str)) + ' \\\\\n'
|
||||
|
||||
return out
|
||||
def generate_hypethsesis_table(squared, analyzed, residues):
|
||||
out = ''
|
||||
for i, square, value, residue in zip(range(1, len(squared)+1),
|
||||
|
|
BIN
tem/messungen/gold_hires/auswertung/1/insel/Gold.1.pdf
Normal file
Before Width: | Height: | Size: 257 KiB After Width: | Height: | Size: 257 KiB |
Before Width: | Height: | Size: 5 KiB After Width: | Height: | Size: 5 KiB |
Before Width: | Height: | Size: 270 KiB After Width: | Height: | Size: 270 KiB |
Before Width: | Height: | Size: 16 KiB After Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 262 KiB After Width: | Height: | Size: 262 KiB |
Before Width: | Height: | Size: 5.9 KiB After Width: | Height: | Size: 5.9 KiB |
Before Width: | Height: | Size: 262 KiB After Width: | Height: | Size: 262 KiB |
Before Width: | Height: | Size: 10 KiB After Width: | Height: | Size: 10 KiB |
|
@ -1,10 +1,17 @@
|
|||
@article{Procházka,
|
||||
author = "I. Procházka",
|
||||
title = "Positron Anihilation Spectroscopy",
|
||||
journal = "Materials Structure",
|
||||
volume = "8",
|
||||
number = "2",
|
||||
year = "2001",
|
||||
URL = "http://www.xray.cz/ms/bul2001-2/prochazka.pdf",
|
||||
keywords = "physics"
|
||||
@BOOK{Wyckoff1968,
|
||||
AUTHOR = {Wyckoff, Ralph Walter Graystone},
|
||||
YEAR = {1968},
|
||||
TITLE = {Crystal Structures},
|
||||
EDITION = {},
|
||||
ISBN = {},
|
||||
PUBLISHER = {Interscience Publishers},
|
||||
ADDRESS = {New York},
|
||||
}
|
||||
|
||||
|
||||
|
||||
@booklet{Aachen,
|
||||
author = {Thomas Hebbeker},
|
||||
title = {Statistik - Fehlerrechnung - Auswertung von Messungen - Teil 2},
|
||||
url = {https://web.physik.rwth-aachen.de/~hebbeker/lectures/stat_fprakt_2.pdf},
|
||||
}
|
||||
|
|
|
@ -3,7 +3,6 @@
|
|||
\title{Transmissionselektronenmikroskop}
|
||||
\author{Oliver Matthes, Valentin Boettcher}
|
||||
\usepackage{todonotes}
|
||||
\graphicspath{ {figs/} }
|
||||
\usepackage{tikz}
|
||||
\usepackage{pgf}
|
||||
\usepackage[version=4]{mhchem}
|
||||
|
@ -115,7 +114,236 @@ ihn umgebenden, abschirmend wirkenden Elektronen zusammensetzt.
|
|||
\subsection{Hochaufgel\"oste Abbildung von Goldinseln}
|
||||
\label{sec:hrtem}
|
||||
|
||||
Das TEM wurde im realbildmodus
|
||||
Nach dem Auffinden einer geeigneten Ansammlung von Goldinseln und erneuter
|
||||
Fokussierung wurden mehrere HRTEM Bilder dieser Ansammlung
|
||||
aufgenonmmen. Dabei war deutlich ein Drift durch die Thermische
|
||||
L\"angen\"anderung des Objekttr\"agers zu erkennen.
|
||||
|
||||
Aus diesen Abbildungen sind in bestimmten Bereichen deutlich
|
||||
Atomreihen zu erkennen (siehe auch~\ref{fig:hrtem}). Diese Regionen
|
||||
wurden mit der Software \verb|Digital Micrograph| ausgew\"ahlt und
|
||||
weitergehend ausgewertet
|
||||
(siehe~\ref{fig:gold_hires-detail_1}). In~\ref{fig:gold_hires-detail_2}
|
||||
ist gut zu erkennen, dass der Kontrast am Rand der Goldinsel besser
|
||||
ist, da dort die Goldschicht d\"unner ist. Der bessere Kontrast
|
||||
k\"onnte sich aus weniger fehlstellen und allgemein weniger strarker
|
||||
Streuung (absorbtion am Linsenpolschuh) ergeben. Auch erscheinen die
|
||||
Netzebenen heller als Effekt des Beugungskontrastes heller als der
|
||||
Hintegrund. Es sollte also generell vermieden werden, die HRTEM
|
||||
Abbildung wie die Abbildung eines Lichtmikroskopes zu interpretieren.
|
||||
|
||||
% TODO: in theorie
|
||||
% https://commons.wikimedia.org/wiki/File:Simulation_GaN.png einbinden
|
||||
|
||||
Anschließend konnte durch Bildung eines Intensitätsprofils die
|
||||
Abst\"ande der sichtbaren Reihen (= Netzebenen) errechnet
|
||||
werden. Dabei wurde jeweils \"uber die Breite eines Rechtecks
|
||||
(siehe~\ref{fig:gold_hires-detail_1}), welches senkrecht zu den
|
||||
Netzebenen orientiert wurde, integriert. Die entstandenen Profile
|
||||
wurden jeweils in Bereichen, in denen der Peakabstand konstant schien
|
||||
auf Peaks analysiert (siehe~\ref{fig:gold_hires-profile_1}). Der
|
||||
gemittelte Peakabstand ergab dann die Netzebenenabst\"ande
|
||||
in~\ref{tab:hrtemnetz}. Die statistische Abweichung ergibts sich aus
|
||||
der Standardabweichung der Peakabst\"ande (geteilt durch die Wurzel
|
||||
der Anzahl der Peaks). Die systematische Abweichung ergibt sich
|
||||
gem\"a\ss{} der Fehlerfortpflanzung zu
|
||||
\(\Delta d = \frac{\Delta x}{n}\), wobei \(n\) die Anzahl der Peaks
|
||||
und \(\Delta x = \SI{0.037}{\nano\meter}\) die ortsaufl\"osung des
|
||||
Profils ist.
|
||||
|
||||
\begin{table}[h]
|
||||
\centering
|
||||
\begin{tabular}{S|SSS}
|
||||
\toprule
|
||||
{Aufn. Nr.} & {\(d\) [\si{\nano\meter}]} & {\(\Delta d_{syst}\)
|
||||
[\si{\nano\meter}]} &
|
||||
{\(\Delta
|
||||
d_{stat}\)
|
||||
[\si{\nano\meter}]}\\
|
||||
\midrule
|
||||
1 & 0.204 & 0.007 & 0.007 \\
|
||||
2 & 0.245 & 0.005 & 0.006 \\
|
||||
3 & 0.2336 & 0.0037 & 0.0047 \\
|
||||
4 & 0.241 & 0.005 & 0.006 \\
|
||||
\end{tabular}
|
||||
\caption[HRTEM Netzebenenabst\"ande]{Aus den HRTEM Aufnahmen
|
||||
ermittelte Netzebenenabst\"ande}
|
||||
\label{tab:hrtemnetz}
|
||||
\end{table}
|
||||
|
||||
\begin{figure}[hpt]\centering
|
||||
\subfloat[Aufnahme 1]{%
|
||||
\begin{subfigure}{.29\textwidth}
|
||||
\centering \resizebox{1\textwidth}{!}{%
|
||||
\input{../auswertung/figs/gold_hires/profile_1.pgf} }
|
||||
\caption{Intenit\"atsprofil.}
|
||||
\label{fig:gold_hires-profile_1}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{.29\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=.8\textwidth]{../messungen/gold_hires/auswertung/1/insel/Gold_1.jpg}%
|
||||
\caption{Gesamtbild.}
|
||||
\label{fig:gold_hires-picture_1}
|
||||
\end{subfigure}
|
||||
|
||||
\begin{subfigure}{.29\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=.8\textwidth]{../messungen/gold_hires/auswertung/1/insel/Gold_1s.jpg}%
|
||||
\caption{Ausschnitt.}
|
||||
\label{fig:gold_hires-detail_1}
|
||||
\end{subfigure}
|
||||
}
|
||||
|
||||
\vspace{.5cm}
|
||||
\subfloat[Aufnahme 2]{%
|
||||
\begin{subfigure}{.29\textwidth}
|
||||
\centering \resizebox{1\textwidth}{!}{%
|
||||
\input{../auswertung/figs/gold_hires/profile_4.pgf} }
|
||||
\caption{Intenit\"atsprofil.}
|
||||
\label{fig:gold_hires-profile_2}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{.29\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=.8\textwidth]{../messungen/gold_hires/auswertung/4/insel/Gold_4.jpg}%
|
||||
\caption{Gesamtbild.}
|
||||
\label{fig:gold_hires-picture_2}
|
||||
\end{subfigure}
|
||||
|
||||
\begin{subfigure}{.29\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=.8\textwidth]{../messungen/gold_hires/auswertung/4/insel/Gold_4s.jpg}%
|
||||
\caption{Ausschnitt.}
|
||||
\label{fig:gold_hires-detail_2}
|
||||
\end{subfigure}
|
||||
}
|
||||
|
||||
\vspace{.5cm}
|
||||
\subfloat[Aufnahme 3]{%
|
||||
\begin{subfigure}{.29\textwidth}
|
||||
\centering \resizebox{1\textwidth}{!}{%
|
||||
\input{../auswertung/figs/gold_hires/profile_6.pgf} }
|
||||
\caption{Intenit\"atsprofil.}
|
||||
\label{fig:gold_hires-profile_3}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{.29\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=.8\textwidth, ]{../messungen/gold_hires/auswertung/6/zwei _richtungen/diag_6.jpg}%
|
||||
\caption{Gesamtbild.}
|
||||
\label{fig:gold_hires-picture_3}
|
||||
\end{subfigure}
|
||||
|
||||
\begin{subfigure}{.29\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=.8\textwidth]{../messungen/gold_hires/auswertung/6/zwei _richtungen/diag_6s.jpg}%
|
||||
\caption{Ausschnitt. Auswahlrechteck fehlt.}
|
||||
\label{fig:gold_hires-detail_3}
|
||||
\end{subfigure}
|
||||
}
|
||||
|
||||
|
||||
\vspace{.5cm}
|
||||
\subfloat[Aufnahme 4]{%
|
||||
\begin{subfigure}{.29\textwidth}
|
||||
\centering \resizebox{1\textwidth}{!}{%
|
||||
\input{../auswertung/figs/gold_hires/profile_10.pgf} }
|
||||
\caption{Intenit\"atsprofil.}
|
||||
\label{fig:gold_hires-profile_4}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{.29\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=.8\textwidth, ]{../messungen/gold_hires/auswertung/10/1/Gold_10.jpg}%
|
||||
\caption{Gesamtbild.}
|
||||
\label{fig:gold_hires-picture_4}
|
||||
\end{subfigure}
|
||||
|
||||
\begin{subfigure}{.29\textwidth}
|
||||
\centering
|
||||
\includegraphics[width=.8\textwidth]{../messungen/gold_hires/auswertung/10/1/Gold_10s.jpg}%
|
||||
\caption{Ausschnitt.}
|
||||
\label{fig:gold_hires-detail_4}
|
||||
\end{subfigure}
|
||||
}
|
||||
\caption[HRTEM Aufnahmen]{HRTEM aufnamen einer Gruppe von Goldinseln
|
||||
mit Detailausschnitt und Intensitätsprofil, integriert aus den
|
||||
blauen Rechtecken in den Ausschnitten.}\label{fig:hrtem}
|
||||
\end{figure}
|
||||
|
||||
% todo: formel index kub. Gitter
|
||||
|
||||
Da f\"ur die Netzebenenabst\"ande im Kubischen Gitter mit der
|
||||
Gitterkonstante \(a\)
|
||||
\begin{equation}
|
||||
\label{eq:cubd}
|
||||
d_{hkl} = \frac{a}{\sqrt{h^2+k^2+l^2}}
|
||||
\end{equation}
|
||||
gilt k\"onnen durch durch Multiplikation des gemessenen Abstandes mit
|
||||
\({\sqrt{h^2+k^2+l^2}}\) f\"ur verschiedene \(h,k,l\in\mathbb{N}\) und
|
||||
Vergleich mit dem Literaturwert
|
||||
\(a_{lit}=\SI{.4078}{\nano\meter}\)~\cite{Wyckoff1968} die plausibelsten
|
||||
Netzebenen ermittelt werden.
|
||||
|
||||
\begin{table}[h]
|
||||
\centering
|
||||
\begin{tabular}{SS|SSSS}
|
||||
\toprule
|
||||
{Aufn. Nr.} & {\(\sqrt{h^2+k^2+l^2}\)} & {\(a\) [\si{\nano\meter}]} &
|
||||
{\(\Delta a_{syst}\)
|
||||
[\si{\nano\meter}]} &
|
||||
{\(\Delta
|
||||
a_{stat}\)
|
||||
[\si{\nano\meter}]}
|
||||
& {\(|a-a_{lit}|\) [\si{\nano\meter}]}\\
|
||||
\midrule
|
||||
1 & \(\sqrt{4}\) & 0.409 & 0.013 & 0.013 & 0.001 \\
|
||||
2 & \(\sqrt{3}\) & 0.424 & 0.009 & 0.010 & 0.016 \\
|
||||
3 & \(\sqrt{3}\) & 0.405 & 0.006 & 0.008 & 0.003 \\
|
||||
4 & \(\sqrt{3}\) & 0.418 & 0.008 & 0.010 & 0.010 \\
|
||||
\end{tabular}
|
||||
\caption[HRTEM Gitterkonstanten]{Aus den HRTEM Aufnahmen
|
||||
ermittelte Gitterkonstanten.}
|
||||
\label{tab:hrtemas}
|
||||
\end{table}
|
||||
|
||||
\ref{tab:hrtemnetz} Zeigt die gewonnenen
|
||||
Gitterkonstanten. Interssanterweise weist Messung \(2\) den
|
||||
gr\"o\ss{}ten Abstand zum Literaturwert auf und hat dennoch nicht die
|
||||
gr\"o\ss{}ten Fehlergrenzen. Falls die Profielbildung nich genau
|
||||
senkrecht zu den Netzebenen erfolgt, ergeben sich nicht gut
|
||||
Quantifizierbare Abweichungen. Das ist hier warscheinlich der Fall. In
|
||||
allen F\"allen liegt der Litertaturwert jedoch innerhalb der
|
||||
kombinierten Fehlergrenzen.
|
||||
|
||||
Die zwei dazugeh\"origen Netzebenen (ohne Permutation) sind
|
||||
in~\ref{tab:netzhrtem} einzusehen.
|
||||
|
||||
\begin{table}[h]
|
||||
\centering
|
||||
\begin{tabular}{ll}
|
||||
\toprule
|
||||
\(\sqrt{h^2+k^2+l^2}\) & Netzebenen \\
|
||||
\midrule
|
||||
\(\sqrt{3}\) & \(\mqty(1 & 1 & 1)\) \\
|
||||
\(\sqrt{4}\) & \(\mqty(2 & 0 & 0)\) \\
|
||||
\end{tabular}
|
||||
\caption{Netzebenen zu den \(\sqrt{h^2+k^2+l^2}\) aus der HRTEM Messung.}
|
||||
\label{tab:netzhrtem}
|
||||
\end{table}
|
||||
|
||||
Durch gewichtetes mitteln der Gitterkonstanten aus~\ref{tab:hrtemas}
|
||||
wird die Resultierende Gitterkonstante ermittelt. Die gewichte ergeben
|
||||
sich dabei aus \(w_i = (\Delta a_{syst} + \Delta a_{stat})^{-2}\). Mit eben
|
||||
diesen Gewichten wird auch die systematische Abweichung nach
|
||||
Fehlerfortpflanzung zu \((\sum_i w_i)^{-1/2}\) bestimmt. Die
|
||||
statistische Abweichung ergibt sich durch die gewichtete
|
||||
Standardabweichung aus den vier Messwerten.~\cite{Aachen}
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:ahrtem}
|
||||
a_{HRTEM} = \SI[parse-numbers=false]{0.413\pm 0.009\,(sys)\pm 0.008\,(stat)}{\nano\meter}
|
||||
\end{equation}
|
||||
|
||||
Der wert in~\eqref{eq:ahrtem} stimmt innerhalb der Abweichungsgrenzen
|
||||
mit der Litertatur \"uberein.
|
||||
|
||||
\newpage
|
||||
\section{Verzeichnisse}
|
||||
|
|