mirror of
https://github.com/vale981/bachelor_thesis
synced 2025-03-05 09:31:42 -05:00
correct some notational blunders in the integration chapter
This commit is contained in:
parent
99b479d56d
commit
48248d980a
1 changed files with 5 additions and 4 deletions
|
@ -45,7 +45,7 @@ expected value \(\EX{X_i}=\mathbb{E}\) and variance
|
||||||
%
|
%
|
||||||
Because \(\frac{\sigma^2}{N}\xrightarrow{N\rightarrow\infty} 0\)
|
Because \(\frac{\sigma^2}{N}\xrightarrow{N\rightarrow\infty} 0\)
|
||||||
\cref{eq:approxexp} really converges to \(I\). For finite, but large
|
\cref{eq:approxexp} really converges to \(I\). For finite, but large
|
||||||
\(N\) the value of \cref{eq:approxexp} is distributed (in increasingly
|
\(N\) the value of \(\EX{F/P}\) is distributed (in increasingly
|
||||||
good approximation) according to a normal distribution around \(I\)
|
good approximation) according to a normal distribution around \(I\)
|
||||||
with the variance \(\VAR{F/\Rho}\cdot N^{-1}\) as in \cref{eq:varI} by
|
with the variance \(\VAR{F/\Rho}\cdot N^{-1}\) as in \cref{eq:varI} by
|
||||||
virtue of the central limit theorem.
|
virtue of the central limit theorem.
|
||||||
|
@ -121,7 +121,7 @@ squared when approximating the integral by the sum.
|
||||||
%
|
%
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:approxvar-I}
|
\label{eq:approxvar-I}
|
||||||
\VAR{I} = \abs{\Omega}\int_\Omega f(\vb{x})^2 -
|
\VAR{\frac{F}{P}} = \abs{\Omega}\int_\Omega f(\vb{x})^2 -
|
||||||
\underbrace{\qty(\frac{I}{\abs{\Omega}})^2}_{=\bar{f}} \dd{\vb{x}} \equiv \abs{\Omega}\cdot\sigma_f^2 \approx
|
\underbrace{\qty(\frac{I}{\abs{\Omega}})^2}_{=\bar{f}} \dd{\vb{x}} \equiv \abs{\Omega}\cdot\sigma_f^2 \approx
|
||||||
\frac{\abs{\Omega}^2}{N-1}\sum_{i}\qty[f(\vb{x}_i) - \bar{f}]^2
|
\frac{\abs{\Omega}^2}{N-1}\sum_{i}\qty[f(\vb{x}_i) - \bar{f}]^2
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
@ -129,8 +129,9 @@ squared when approximating the integral by the sum.
|
||||||
Applying this method to integrate the \(\qqgg\) cross section from
|
Applying this method to integrate the \(\qqgg\) cross section from
|
||||||
\cref{eq:crossec} over a \(\theta\) interval, equivalent to
|
\cref{eq:crossec} over a \(\theta\) interval, equivalent to
|
||||||
\(\eta\in [-2.5, 2.5]\) with a target accuracy of
|
\(\eta\in [-2.5, 2.5]\) with a target accuracy of
|
||||||
\(\varepsilon=10^{-3}\) results in \result{xs/python/xs_mc} with a
|
\(\sigma=\SI{1e-3}{\pico\barn}\) results in
|
||||||
sample size of \result{xs/python/xs_mc_N}.
|
\result{xs/python/xs_mc} with a sample size of
|
||||||
|
\result{xs/python/xs_mc_N}.
|
||||||
|
|
||||||
Changing variables and integrating \cref{eq:xs-eta} over \(\eta\) with
|
Changing variables and integrating \cref{eq:xs-eta} over \(\eta\) with
|
||||||
the same target accuracy yields~\result{xs/python/xs_mc_eta} with a
|
the same target accuracy yields~\result{xs/python/xs_mc_eta} with a
|
||||||
|
|
Loading…
Add table
Reference in a new issue