mirror of
https://github.com/vale981/bachelor_thesis
synced 2025-03-04 17:11:39 -05:00
add integration slides
This commit is contained in:
parent
2d5741e6ad
commit
99b479d56d
2 changed files with 123 additions and 15 deletions
137
talk/slides.tex
137
talk/slides.tex
|
@ -15,10 +15,10 @@ labelformat=brace, position=top]{subcaption}
|
|||
\graphicspath{ {figs/} }
|
||||
|
||||
\usetheme{Antibes}
|
||||
\usepackage{eulerpx}
|
||||
% \usepackage{eulerpx}
|
||||
\usepackage{ifdraft}
|
||||
|
||||
\usefonttheme[onlymath]{serif}
|
||||
% \usefonttheme[onlymath]{serif}
|
||||
\setbeamertemplate{itemize items}[default]
|
||||
\setbeamertemplate{enumerate items}[default]
|
||||
\AtBeginSection[]
|
||||
|
@ -209,18 +209,12 @@ labelformat=brace, position=top]{subcaption}
|
|||
\begin{block}{Task: calculate
|
||||
\(\abs{\mathcal{M}}^2\)}
|
||||
\begin{enumerate}[<+->]
|
||||
\item translate diagrams to
|
||||
matrix elements
|
||||
\item use Casimir's trick to
|
||||
average over spins
|
||||
\item use completeness
|
||||
relation to sum over
|
||||
photon polarizations
|
||||
\item use trace identities
|
||||
to compute the absolute
|
||||
square
|
||||
\item simplify with
|
||||
trigonometric identities
|
||||
\item translate diagrams to matrix elements
|
||||
\item use Casimir's trick to average over spins
|
||||
\item use completeness relation to sum over photon
|
||||
polarizations
|
||||
\item use trace identities to compute the absolute square
|
||||
\item simplify with trigonometric identities
|
||||
\end{enumerate}
|
||||
\end{block}
|
||||
\pause Here: Quark masses
|
||||
|
@ -286,5 +280,118 @@ labelformat=brace, position=top]{subcaption}
|
|||
\end{minipage}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\section{Monte Carlo Methods}
|
||||
|
||||
\note[itemize]{
|
||||
\item Gradually bring in knowledge through distribution.
|
||||
}
|
||||
\begin{frame}
|
||||
\begin{block}{Basic Ideas}
|
||||
\begin{itemize}
|
||||
\item<+-> Given some unknown function
|
||||
\(f\colon \vb{x}\in\Omega\subset\mathbb{R}^n\mapsto\mathbb{R}\) \ldots
|
||||
\item<+-> \ldots\ how do we answer questions about \(f\)?
|
||||
\end{itemize}
|
||||
\;\;\onslide<+->{\(\implies\) Sample it at random points.}
|
||||
\end{block}
|
||||
\pause
|
||||
\begin{block}{Main Applications}
|
||||
\begin{enumerate}
|
||||
\item<+-> integrate \(f\) over some volume \(\Omega\)
|
||||
\item<+-> treat \(f\) as distribution and take random samples
|
||||
\end{enumerate}
|
||||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Integration}
|
||||
\note[itemize]{
|
||||
\item omitting details (law of big numbers, central limit theorem)
|
||||
\item at least three angles of attack
|
||||
\item some sort of importance sampling, volume: stratified sampling
|
||||
}
|
||||
\begin{frame}
|
||||
\begin{itemize}
|
||||
\item<+-> we have:
|
||||
\(f\colon \vb{x}\in\Omega\subset\mathbb{R}^n\mapsto\mathbb{R}\)
|
||||
and \(\rho\colon \vb{x}\in\Omega\mapsto\mathbb{R}_{> 0}\) with
|
||||
\(\int_{\Omega}\rho(\vb{x})\dd{\vb{x}} = 1\).
|
||||
\item<+-> we seek:
|
||||
\begin{equation}
|
||||
\label{eq:baseintegral}
|
||||
I = \int_\Omega f(\vb{x}) \dd{\vb{x}}
|
||||
\onslide<+->{= \int_\Omega
|
||||
\qty[\frac{f(\vb{x})}{\rho(\vb{x})}] \rho(\vb{x}) \dd{\vb{x}} = \EX{\frac{F}{\Rho}}}
|
||||
\end{equation}
|
||||
\item<+-> numeric approximation:
|
||||
\begin{equation}
|
||||
\label{eq:approxexp}
|
||||
\EX{\frac{F}{\Rho}} \approx
|
||||
\frac{1}{N}\sum_{i=1}^N\frac{f(\vb{x_i})}{\rho(\vb{x_i})}
|
||||
\xrightarrow{N\rightarrow\infty} I
|
||||
\end{equation}
|
||||
\item<+-> error approximation:
|
||||
\begin{align}
|
||||
\sigma_I^2 &= \frac{\textcolor<+->{red}{\sigma^2}}{\textcolor<.->{blue}{N}} \\
|
||||
\sigma^2 &= \VAR{\frac{F}{\Rho}} = \int_{\textcolor<+(3)->{blue}{\Omega}} \qty[I -
|
||||
\frac{f(\vb{x})}{\textcolor<+->{blue}{\rho(\vb{x})}}]^2
|
||||
\textcolor<.->{blue}{\rho(\vb{x})} \textcolor<+->{blue}{\dd{\vb{x}}} \approx \frac{1}{N - 1}\sum_i \qty[I -
|
||||
\frac{f(\vb{x_i})}{\rho(\vb{x_i})}]^2 \label{eq:varI-approx}
|
||||
\end{align}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Change of Variables}
|
||||
Choose \(\rho(\vb{x}) = \frac{1}{\abs{\Omega}}\)
|
||||
\onslide<2->{\(\implies I=\frac{\abs{\Omega}}{N}\sum_{i=1}^N
|
||||
f(\vb{x_i})=\abs{\Omega}\cdot\bar{f}\) and
|
||||
\(\VAR{\frac{F}{P}}\approx\frac{\abs{\Omega}^2}{N-1}\sum_{i}\qty[f(\vb{x}_i)
|
||||
- \bar{f}]^2\)}
|
||||
\begin{block}{Results}
|
||||
\begin{itemize}
|
||||
\item<3-> integrating \(\dv{\sigma}{\theta}\) with target error of
|
||||
\(\sigma = \SI{1e-3}{\pico\barn}\) takes
|
||||
\result{xs/python/xs_mc_N} samples
|
||||
\item<4-> integrating \(\dv{\sigma}{\eta}\) takes just
|
||||
\result{xs/python/xs_mc_eta_N} samples
|
||||
\end{itemize}
|
||||
\end{block}
|
||||
\begin{figure}[hb]
|
||||
\centering \onslide<3->{
|
||||
\begin{subfigure}[c]{.4\textwidth}
|
||||
\centering \plot[scale=.6]{xs/xs_integrand}
|
||||
\end{subfigure}
|
||||
} \onslide<4->{
|
||||
\begin{subfigure}[c]{.4\textwidth}
|
||||
\centering \plot[scale=.6]{xs/xs_integrand_eta}
|
||||
\end{subfigure}
|
||||
}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Vegas}
|
||||
\begin{columns}
|
||||
\begin{column}{.5\textwidth}
|
||||
\begin{block}{Idea}
|
||||
\begin{enumerate}
|
||||
\item subdivide integration volume into grid, take equal
|
||||
number of samples in each hypercube \(\iff\) define \(\rho\)
|
||||
as step function
|
||||
\item iteratively approximate optimal \(\rho = f(\vb{x})/I\)
|
||||
with step function
|
||||
\end{enumerate}
|
||||
\end{block}
|
||||
\begin{block}{Result}
|
||||
Total function evaluations: \result{xs/python/xs_mc_θ_vegas_N}
|
||||
\end{block}
|
||||
\end{column}
|
||||
\begin{column}{.5\textwidth}
|
||||
\begin{figure}[ht]
|
||||
\centering \plot[scale=.6]{xs/xs_integrand_vegas}
|
||||
\caption{\(2\pi\dv{\sigma}{\theta}\) scaled to increments
|
||||
found by \vegas}
|
||||
\end{figure}
|
||||
\end{column}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
\end{document}
|
||||
massless limit
|
||||
|
|
|
@ -326,6 +326,7 @@ What the heck should be in there. Let's draft up an outline.
|
|||
- spending time on tooling is OK
|
||||
- have to put more time into detailed diagnosis
|
||||
- event generators are marvelously complex
|
||||
- should have introduced the term importance sampling properly
|
||||
** Outlook
|
||||
- more effects
|
||||
- multi channel mc
|
||||
|
|
Loading…
Add table
Reference in a new issue