add integration slides

This commit is contained in:
hiro98 2020-06-21 21:25:59 +02:00
parent 2d5741e6ad
commit 99b479d56d
2 changed files with 123 additions and 15 deletions

View file

@ -15,10 +15,10 @@ labelformat=brace, position=top]{subcaption}
\graphicspath{ {figs/} }
\usetheme{Antibes}
\usepackage{eulerpx}
% \usepackage{eulerpx}
\usepackage{ifdraft}
\usefonttheme[onlymath]{serif}
% \usefonttheme[onlymath]{serif}
\setbeamertemplate{itemize items}[default]
\setbeamertemplate{enumerate items}[default]
\AtBeginSection[]
@ -209,18 +209,12 @@ labelformat=brace, position=top]{subcaption}
\begin{block}{Task: calculate
\(\abs{\mathcal{M}}^2\)}
\begin{enumerate}[<+->]
\item translate diagrams to
matrix elements
\item use Casimir's trick to
average over spins
\item use completeness
relation to sum over
photon polarizations
\item use trace identities
to compute the absolute
square
\item simplify with
trigonometric identities
\item translate diagrams to matrix elements
\item use Casimir's trick to average over spins
\item use completeness relation to sum over photon
polarizations
\item use trace identities to compute the absolute square
\item simplify with trigonometric identities
\end{enumerate}
\end{block}
\pause Here: Quark masses
@ -286,5 +280,118 @@ labelformat=brace, position=top]{subcaption}
\end{minipage}
\end{figure}
\end{frame}
\section{Monte Carlo Methods}
\note[itemize]{
\item Gradually bring in knowledge through distribution.
}
\begin{frame}
\begin{block}{Basic Ideas}
\begin{itemize}
\item<+-> Given some unknown function
\(f\colon \vb{x}\in\Omega\subset\mathbb{R}^n\mapsto\mathbb{R}\) \ldots
\item<+-> \ldots\ how do we answer questions about \(f\)?
\end{itemize}
\;\;\onslide<+->{\(\implies\) Sample it at random points.}
\end{block}
\pause
\begin{block}{Main Applications}
\begin{enumerate}
\item<+-> integrate \(f\) over some volume \(\Omega\)
\item<+-> treat \(f\) as distribution and take random samples
\end{enumerate}
\end{block}
\end{frame}
\subsection{Integration}
\note[itemize]{
\item omitting details (law of big numbers, central limit theorem)
\item at least three angles of attack
\item some sort of importance sampling, volume: stratified sampling
}
\begin{frame}
\begin{itemize}
\item<+-> we have:
\(f\colon \vb{x}\in\Omega\subset\mathbb{R}^n\mapsto\mathbb{R}\)
and \(\rho\colon \vb{x}\in\Omega\mapsto\mathbb{R}_{> 0}\) with
\(\int_{\Omega}\rho(\vb{x})\dd{\vb{x}} = 1\).
\item<+-> we seek:
\begin{equation}
\label{eq:baseintegral}
I = \int_\Omega f(\vb{x}) \dd{\vb{x}}
\onslide<+->{= \int_\Omega
\qty[\frac{f(\vb{x})}{\rho(\vb{x})}] \rho(\vb{x}) \dd{\vb{x}} = \EX{\frac{F}{\Rho}}}
\end{equation}
\item<+-> numeric approximation:
\begin{equation}
\label{eq:approxexp}
\EX{\frac{F}{\Rho}} \approx
\frac{1}{N}\sum_{i=1}^N\frac{f(\vb{x_i})}{\rho(\vb{x_i})}
\xrightarrow{N\rightarrow\infty} I
\end{equation}
\item<+-> error approximation:
\begin{align}
\sigma_I^2 &= \frac{\textcolor<+->{red}{\sigma^2}}{\textcolor<.->{blue}{N}} \\
\sigma^2 &= \VAR{\frac{F}{\Rho}} = \int_{\textcolor<+(3)->{blue}{\Omega}} \qty[I -
\frac{f(\vb{x})}{\textcolor<+->{blue}{\rho(\vb{x})}}]^2
\textcolor<.->{blue}{\rho(\vb{x})} \textcolor<+->{blue}{\dd{\vb{x}}} \approx \frac{1}{N - 1}\sum_i \qty[I -
\frac{f(\vb{x_i})}{\rho(\vb{x_i})}]^2 \label{eq:varI-approx}
\end{align}
\end{itemize}
\end{frame}
\begin{frame}{Change of Variables}
Choose \(\rho(\vb{x}) = \frac{1}{\abs{\Omega}}\)
\onslide<2->{\(\implies I=\frac{\abs{\Omega}}{N}\sum_{i=1}^N
f(\vb{x_i})=\abs{\Omega}\cdot\bar{f}\) and
\(\VAR{\frac{F}{P}}\approx\frac{\abs{\Omega}^2}{N-1}\sum_{i}\qty[f(\vb{x}_i)
- \bar{f}]^2\)}
\begin{block}{Results}
\begin{itemize}
\item<3-> integrating \(\dv{\sigma}{\theta}\) with target error of
\(\sigma = \SI{1e-3}{\pico\barn}\) takes
\result{xs/python/xs_mc_N} samples
\item<4-> integrating \(\dv{\sigma}{\eta}\) takes just
\result{xs/python/xs_mc_eta_N} samples
\end{itemize}
\end{block}
\begin{figure}[hb]
\centering \onslide<3->{
\begin{subfigure}[c]{.4\textwidth}
\centering \plot[scale=.6]{xs/xs_integrand}
\end{subfigure}
} \onslide<4->{
\begin{subfigure}[c]{.4\textwidth}
\centering \plot[scale=.6]{xs/xs_integrand_eta}
\end{subfigure}
}
\end{figure}
\end{frame}
\begin{frame}{Vegas}
\begin{columns}
\begin{column}{.5\textwidth}
\begin{block}{Idea}
\begin{enumerate}
\item subdivide integration volume into grid, take equal
number of samples in each hypercube \(\iff\) define \(\rho\)
as step function
\item iteratively approximate optimal \(\rho = f(\vb{x})/I\)
with step function
\end{enumerate}
\end{block}
\begin{block}{Result}
Total function evaluations: \result{xs/python/xs_mc_θ_vegas_N}
\end{block}
\end{column}
\begin{column}{.5\textwidth}
\begin{figure}[ht]
\centering \plot[scale=.6]{xs/xs_integrand_vegas}
\caption{\(2\pi\dv{\sigma}{\theta}\) scaled to increments
found by \vegas}
\end{figure}
\end{column}
\end{columns}
\end{frame}
\end{document}
massless limit

View file

@ -326,6 +326,7 @@ What the heck should be in there. Let's draft up an outline.
- spending time on tooling is OK
- have to put more time into detailed diagnosis
- event generators are marvelously complex
- should have introduced the term importance sampling properly
** Outlook
- more effects
- multi channel mc