diff --git a/latex/tex/monte-carlo/integration.tex b/latex/tex/monte-carlo/integration.tex index 024eedb..02fc834 100644 --- a/latex/tex/monte-carlo/integration.tex +++ b/latex/tex/monte-carlo/integration.tex @@ -45,7 +45,7 @@ expected value \(\EX{X_i}=\mathbb{E}\) and variance % Because \(\frac{\sigma^2}{N}\xrightarrow{N\rightarrow\infty} 0\) \cref{eq:approxexp} really converges to \(I\). For finite, but large -\(N\) the value of \cref{eq:approxexp} is distributed (in increasingly +\(N\) the value of \(\EX{F/P}\) is distributed (in increasingly good approximation) according to a normal distribution around \(I\) with the variance \(\VAR{F/\Rho}\cdot N^{-1}\) as in \cref{eq:varI} by virtue of the central limit theorem. @@ -121,7 +121,7 @@ squared when approximating the integral by the sum. % \begin{equation} \label{eq:approxvar-I} - \VAR{I} = \abs{\Omega}\int_\Omega f(\vb{x})^2 - + \VAR{\frac{F}{P}} = \abs{\Omega}\int_\Omega f(\vb{x})^2 - \underbrace{\qty(\frac{I}{\abs{\Omega}})^2}_{=\bar{f}} \dd{\vb{x}} \equiv \abs{\Omega}\cdot\sigma_f^2 \approx \frac{\abs{\Omega}^2}{N-1}\sum_{i}\qty[f(\vb{x}_i) - \bar{f}]^2 \end{equation} @@ -129,8 +129,9 @@ squared when approximating the integral by the sum. Applying this method to integrate the \(\qqgg\) cross section from \cref{eq:crossec} over a \(\theta\) interval, equivalent to \(\eta\in [-2.5, 2.5]\) with a target accuracy of -\(\varepsilon=10^{-3}\) results in \result{xs/python/xs_mc} with a -sample size of \result{xs/python/xs_mc_N}. +\(\sigma=\SI{1e-3}{\pico\barn}\) results in +\result{xs/python/xs_mc} with a sample size of +\result{xs/python/xs_mc_N}. Changing variables and integrating \cref{eq:xs-eta} over \(\eta\) with the same target accuracy yields~\result{xs/python/xs_mc_eta} with a