2020-06-20 19:03:02 +02:00
|
|
|
\documentclass[10pt, aspectratio=169]{beamer}
|
|
|
|
\usepackage{siunitx}
|
|
|
|
\usepackage[T1]{fontenc}
|
|
|
|
\usepackage{booktabs}
|
|
|
|
\usepackage[backend=biber]{biblatex}
|
|
|
|
\usepackage{mathtools,amssymb}
|
|
|
|
\usepackage{physics}
|
|
|
|
\usepackage{slashed}
|
|
|
|
\usepackage{tikz}
|
|
|
|
\usepackage{tikz-feynman}
|
|
|
|
\usepackage[list=true, font=small,
|
|
|
|
labelformat=brace, position=top]{subcaption}
|
|
|
|
% \setbeameroption{show notes on second screen} %
|
|
|
|
\addbibresource{thesis.bib}
|
|
|
|
\graphicspath{ {figs/} }
|
2020-06-22 20:45:10 +02:00
|
|
|
\usepackage{animate}
|
2020-06-23 18:13:58 +02:00
|
|
|
|
2020-06-20 19:03:02 +02:00
|
|
|
\usetheme{Antibes}
|
2020-06-21 21:25:59 +02:00
|
|
|
% \usepackage{eulerpx}
|
2020-06-20 19:03:02 +02:00
|
|
|
\usepackage{ifdraft}
|
|
|
|
|
2020-06-21 21:25:59 +02:00
|
|
|
% \usefonttheme[onlymath]{serif}
|
2020-06-20 19:03:02 +02:00
|
|
|
\setbeamertemplate{itemize items}[default]
|
|
|
|
\setbeamertemplate{enumerate items}[default]
|
|
|
|
\AtBeginSection[]
|
|
|
|
{
|
|
|
|
\begin{frame}
|
|
|
|
\tableofcontents[currentsection]
|
|
|
|
\end{frame}
|
|
|
|
}
|
|
|
|
|
2020-06-23 18:13:58 +02:00
|
|
|
\AtBeginSubsection[
|
|
|
|
{\frame<beamer>{\frametitle{Outline}
|
|
|
|
\tableofcontents[currentsection,currentsubsection]}}%
|
|
|
|
]
|
|
|
|
|
2020-06-20 19:03:02 +02:00
|
|
|
\setbeamertemplate{footline}[frame number]
|
|
|
|
\setbeamertemplate{note page}[plain]
|
2020-06-22 20:45:10 +02:00
|
|
|
\setbeamertemplate{bibliography item}{\insertbiblabel} %% Remove book
|
|
|
|
%% symbol from references and add
|
|
|
|
%% number
|
2020-06-20 19:03:02 +02:00
|
|
|
|
|
|
|
\sisetup{separate-uncertainty = true}
|
|
|
|
% Macros
|
|
|
|
|
|
|
|
%% qqgg
|
|
|
|
\newcommand{\qqgg}[0]{q\bar{q}\rightarrow\gamma\gamma}
|
|
|
|
|
|
|
|
%% ppgg
|
|
|
|
\newcommand{\ppgg}[0]{pp\rightarrow\gamma\gamma}
|
|
|
|
|
|
|
|
%% Momenta and Polarization Vectors convenience
|
|
|
|
\DeclareMathOperator{\ps}{\slashed{p}}
|
|
|
|
|
|
|
|
\DeclareMathOperator{\pe}{\varepsilon}
|
|
|
|
\DeclareMathOperator{\pes}{\slashed{\pe}}
|
|
|
|
|
|
|
|
\DeclareMathOperator{\pse}{\varepsilon^{*}}
|
|
|
|
\DeclareMathOperator{\pses}{\slashed{\pe}^{*}}
|
|
|
|
|
|
|
|
%% Spinor convenience
|
|
|
|
\DeclareMathOperator{\us}{u}
|
|
|
|
\DeclareMathOperator{\usb}{\bar{u}}
|
|
|
|
|
|
|
|
\DeclareMathOperator{\vs}{v}
|
|
|
|
\DeclareMathOperator*{\vsb}{\overline{v}}
|
|
|
|
|
|
|
|
%% Center of Mass energy
|
|
|
|
\DeclareMathOperator{\ecm}{E_{\text{CM}}}
|
|
|
|
|
|
|
|
%% area hyperbolicus
|
|
|
|
\DeclareMathOperator{\artanh}{artanh}
|
|
|
|
\DeclareMathOperator{\arcosh}{arcosh}
|
|
|
|
|
|
|
|
%% Fast Slash
|
|
|
|
\let\sl\slashed
|
|
|
|
|
|
|
|
%% Notes on Equations
|
|
|
|
\newcommand{\shorteqnote}[1]{ & & \text{\small\llap{#1}}}
|
|
|
|
|
|
|
|
%% Typewriter Macros
|
|
|
|
\newcommand{\sherpa}{\texttt{Sherpa}}
|
|
|
|
\newcommand{\rivet}{\texttt{Rivet}}
|
|
|
|
\newcommand{\vegas}{\texttt{VEGAS}}
|
|
|
|
\newcommand{\lhapdf}{\texttt{LHAPDF6}}
|
|
|
|
\newcommand{\scipy}{\texttt{scipy}}
|
|
|
|
|
|
|
|
%% Sherpa Versions
|
|
|
|
\newcommand{\oldsherpa}{\texttt{2.2.10}}
|
|
|
|
\newcommand{\newsherpa}{\texttt{3.0.0} (unreleased)}
|
|
|
|
|
|
|
|
%% Special Names
|
|
|
|
\newcommand{\lhc}{\emph{LHC}}
|
|
|
|
|
|
|
|
%% Expected Value and Variance
|
|
|
|
\newcommand{\EX}[1]{\operatorname{E}\qty[#1]}
|
|
|
|
\newcommand{\VAR}[1]{\operatorname{VAR}\qty[#1]}
|
|
|
|
|
|
|
|
%% Uppercase Rho
|
|
|
|
\newcommand{\Rho}{P}
|
|
|
|
|
|
|
|
%% Transverse Momentum
|
|
|
|
\newcommand{\pt}[0]{p_\mathrm{T}}
|
|
|
|
|
|
|
|
%% Sign Function
|
|
|
|
\DeclareMathOperator{\sign}{sgn}
|
|
|
|
|
|
|
|
%% Stages
|
|
|
|
\newcommand{\stone}{\texttt{LO}}
|
|
|
|
\newcommand{\sttwo}{\texttt{LO+PS}}
|
|
|
|
\newcommand{\stthree}{\texttt{LO+PS+pT}}
|
|
|
|
\newcommand{\stfour}{\texttt{LO+PS+pT+Hadr.}}
|
|
|
|
\newcommand{\stfive}{\texttt{LO+PS+pT+Hadr.+MI}}
|
|
|
|
|
|
|
|
%% GeV
|
|
|
|
\newcommand{\gev}[1]{\SI{#1}{\giga\electronvolt}}
|
|
|
|
|
|
|
|
%% Including plots
|
|
|
|
\newcommand{\plot}[2][,]{%
|
|
|
|
\includegraphics[draft=false,#1]{./figs/#2.pdf}}
|
|
|
|
\newcommand{\rivethist}[2][,]{%
|
|
|
|
\includegraphics[draft=false,width=\textwidth,#1]{./figs/rivet/#2.pdf}}
|
|
|
|
|
|
|
|
%% Including Results
|
|
|
|
\newcommand{\result}[1]{\input{./results/#1}\!}
|
|
|
|
|
|
|
|
\title{A Study of Monte Carlo Methods and their Application to
|
|
|
|
Diphoton Production at the Large Hadron Collider}
|
|
|
|
\subtitle{Bachelorvortrag}
|
|
|
|
\author{Valentin Boettcher}
|
|
|
|
\beamertemplatenavigationsymbolsempty
|
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
\hypersetup{pageanchor=false}
|
|
|
|
\maketitle
|
|
|
|
|
2020-06-22 20:45:10 +02:00
|
|
|
\hypersetup{pageanchor=true} \pagenumbering{arabic}
|
2020-06-20 19:03:02 +02:00
|
|
|
|
|
|
|
\begin{frame}
|
|
|
|
\tableofcontents
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\section{Introduction}
|
|
|
|
\begin{frame}{Motivation}
|
|
|
|
\begin{block}{Monte Carlo Methods}
|
|
|
|
\begin{itemize}
|
|
|
|
\item (most) important numerical tools (not just) in particle
|
|
|
|
physics
|
|
|
|
\item crucial interface of theory and experiment
|
|
|
|
\item enable precision predictions within and beyond SM
|
|
|
|
\end{itemize}
|
|
|
|
\end{block}
|
|
|
|
\pause
|
|
|
|
\begin{block}{Diphoton Process \(\qqgg\)}
|
|
|
|
\begin{itemize}
|
|
|
|
\item simple QED process, calculable by hand
|
|
|
|
\item higgs decay channel: \(H\rightarrow \gamma\gamma\)
|
|
|
|
\begin{itemize}
|
|
|
|
\item instrumental in its
|
|
|
|
discovery~\cite{Aad:2012tfa,Chatrchyan:2012ufa}
|
|
|
|
\end{itemize}
|
|
|
|
\item dihiggs decay \(HH\rightarrow b\bar{b}\gamma\gamma\)
|
|
|
|
\begin{itemize}
|
|
|
|
\item process of recent interest~\cite{aaboud2018:sf}
|
|
|
|
\end{itemize}
|
|
|
|
\end{itemize}
|
|
|
|
\end{block}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\section{Calculation of the \(\qqgg\) Cross Section}
|
|
|
|
\subsection{Approach}
|
|
|
|
\begin{frame}
|
|
|
|
\begin{columns}[T]
|
|
|
|
\begin{column}{.5\textwidth}
|
|
|
|
\begin{figure}[ht]
|
|
|
|
\centering
|
|
|
|
\begin{subfigure}[c]{.28\textwidth}
|
|
|
|
\centering
|
|
|
|
\begin{tikzpicture}[scale=.6]
|
|
|
|
\begin{feynman}
|
|
|
|
\diagram [small,horizontal=i2 to a] { i2
|
|
|
|
[particle=\(q\)] -- [fermion, momentum=\(p_2\)] a --
|
|
|
|
[fermion, reversed momentum=\(q\)] b, i1
|
|
|
|
[particle=\(\bar{q}\)] -- [anti fermion,
|
|
|
|
momentum'=\(p_1\)] b, i2 -- [opacity=0] i1, a --
|
|
|
|
[photon, momentum=\(p_3\)] f1 [particle=\(\gamma\)], b
|
|
|
|
-- [photon, momentum'=\(p_4\)] f2
|
|
|
|
[particle=\(\gamma\)], f1 -- [opacity=0] f2, };
|
|
|
|
\end{feynman}
|
|
|
|
\end{tikzpicture}
|
|
|
|
\subcaption{u channel}
|
|
|
|
\end{subfigure}
|
|
|
|
\begin{subfigure}[c]{.28\textwidth}
|
|
|
|
\centering
|
|
|
|
\begin{tikzpicture}[scale=.6]
|
|
|
|
\begin{feynman}
|
|
|
|
\diagram [small,horizontal=i2 to a] { i2
|
|
|
|
[particle=\(q\)] -- [fermion, momentum=\(p_2\)] a --
|
|
|
|
[fermion, reversed momentum'=\(q\)] b, i1
|
|
|
|
[particle=\(\bar{q}\)] -- [anti fermion,
|
|
|
|
momentum'=\(p_1\)] b, i2 -- [opacity=0] i1, a --
|
|
|
|
[draw=none] f2 [particle=\(\gamma\)], b -- [draw=none]
|
|
|
|
f1 [particle=\(\gamma\)], f1 -- [opacity=0] f2, };
|
|
|
|
\diagram* { (a) -- [photon] (f1), (b) -- [photon] (f2),
|
|
|
|
};
|
|
|
|
\end{feynman}
|
|
|
|
\end{tikzpicture}
|
|
|
|
\subcaption{\label{fig:qqggfeyn2}t channel}
|
|
|
|
\end{subfigure}
|
|
|
|
%
|
|
|
|
\caption{Leading order diagrams for \(\qqgg\).}%
|
|
|
|
\label{fig:qqggfeyn}
|
|
|
|
\end{figure}
|
|
|
|
\end{column}
|
|
|
|
\pause
|
|
|
|
\begin{column}{.5\textwidth}
|
2020-06-22 20:45:10 +02:00
|
|
|
\begin{block}{Task: calculate \(\abs{\mathcal{M}}^2\)}
|
2020-06-20 19:03:02 +02:00
|
|
|
\begin{enumerate}[<+->]
|
2020-06-21 21:25:59 +02:00
|
|
|
\item translate diagrams to matrix elements
|
|
|
|
\item use Casimir's trick to average over spins
|
|
|
|
\item use completeness relation to sum over photon
|
|
|
|
polarizations
|
|
|
|
\item use trace identities to compute the absolute square
|
|
|
|
\item simplify with trigonometric identities
|
2020-06-20 19:03:02 +02:00
|
|
|
\end{enumerate}
|
|
|
|
\end{block}
|
2020-06-22 20:45:10 +02:00
|
|
|
\pause Here: Quark masses neglected.
|
2020-06-20 19:03:02 +02:00
|
|
|
\end{column}
|
|
|
|
\end{columns}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\subsection{Result}
|
|
|
|
|
|
|
|
\begin{frame}
|
|
|
|
\begin{equation}
|
|
|
|
\label{eq:averagedm_final}
|
|
|
|
\langle\abs{\mathcal{M}}^2\rangle = \frac{4}{3}(gZ)^4
|
|
|
|
\cdot\frac{1+\cos^2(\theta)}{\sin^2(\theta)} =
|
|
|
|
\frac{4}{3}(gZ)^4\cdot(2\cosh(\eta) - 1)
|
|
|
|
\end{equation}
|
|
|
|
%
|
|
|
|
\pause
|
|
|
|
\[\overset{\text{Golden Rule}}{\implies}\]
|
|
|
|
\pause
|
|
|
|
\begin{equation}
|
|
|
|
\label{eq:crossec}
|
|
|
|
\dv{\sigma}{\Omega} =
|
|
|
|
\frac{1}{2}\frac{1}{(8\pi)^2}\cdot\frac{\abs{\mathcal{M}}^2}{\ecm^2}\cdot\frac{\abs{p_f}}{\abs{p_i}}
|
|
|
|
= \underbrace{\frac{\alpha^2Z^4}{6\ecm^2}}_{\mathfrak{C}}\frac{1+\cos^2(\theta)}{\sin^2(\theta)}
|
|
|
|
\end{equation}
|
|
|
|
|
|
|
|
\pause
|
|
|
|
\begin{figure}[ht]
|
|
|
|
\centering
|
|
|
|
\begin{minipage}[c]{0.3\textwidth}
|
|
|
|
\plot[scale=.6]{xs/diff_xs}
|
|
|
|
\end{minipage}
|
|
|
|
\begin{minipage}[c]{0.3\textwidth}
|
|
|
|
\caption{The differential cross section as a function of the
|
|
|
|
polar angle \(\theta\).}
|
|
|
|
\end{minipage}
|
|
|
|
\end{figure}
|
|
|
|
\end{frame}
|
|
|
|
|
2020-06-22 20:45:10 +02:00
|
|
|
\begin{frame}{Comparison with \sherpa~\cite{Bothmann:2019yzt}}
|
2020-06-20 19:03:02 +02:00
|
|
|
\begin{itemize}
|
2020-06-22 20:45:10 +02:00
|
|
|
|
|
|
|
\item<1-> choose \result{xs/python/eta} and \result{xs/python/ecm}
|
|
|
|
and integrate XS
|
2020-06-20 19:03:02 +02:00
|
|
|
\begin{equation}
|
|
|
|
\label{eq:total-crossec}
|
|
|
|
\sigma = {\frac{\pi\alpha^2Z^4}{3\ecm^2}}\cdot\qty[\tanh(\eta_2) - \tanh(\eta_1) + 2(\eta_1
|
|
|
|
- \eta_2)]
|
|
|
|
\end{equation}
|
|
|
|
\item<2-> analytical result: \result{xs/python/xs}
|
|
|
|
\item<3-> compatible with \sherpa: \result{xs/python/xs_sherpa}
|
|
|
|
\end{itemize}
|
|
|
|
\begin{figure}[ht]
|
|
|
|
\centering
|
|
|
|
\begin{minipage}[c]{0.3\textwidth}
|
|
|
|
\plot[scale=.5]{xs/total_xs}
|
|
|
|
\end{minipage}
|
|
|
|
\begin{minipage}[c]{0.3\textwidth}
|
2020-06-22 20:45:10 +02:00
|
|
|
\caption{\label{fig:totxs} The cross section of the process for
|
|
|
|
a pseudo-rapidity integrated over \([-\eta, \eta]\).}
|
2020-06-20 19:03:02 +02:00
|
|
|
\end{minipage}
|
|
|
|
\end{figure}
|
|
|
|
\end{frame}
|
2020-06-21 21:25:59 +02:00
|
|
|
|
|
|
|
\section{Monte Carlo Methods}
|
|
|
|
|
|
|
|
\note[itemize]{
|
2020-06-22 20:45:10 +02:00
|
|
|
\item Gradually bring in knowledge through distribution. }
|
2020-06-21 21:25:59 +02:00
|
|
|
\begin{frame}
|
|
|
|
\begin{block}{Basic Ideas}
|
|
|
|
\begin{itemize}
|
|
|
|
\item<+-> Given some unknown function
|
2020-06-22 20:45:10 +02:00
|
|
|
\(f\colon \vb{x}\in\Omega\subset\mathbb{R}^n\mapsto\mathbb{R}\)
|
|
|
|
\ldots
|
2020-06-21 21:25:59 +02:00
|
|
|
\item<+-> \ldots\ how do we answer questions about \(f\)?
|
|
|
|
\end{itemize}
|
|
|
|
\;\;\onslide<+->{\(\implies\) Sample it at random points.}
|
|
|
|
\end{block}
|
|
|
|
\pause
|
|
|
|
\begin{block}{Main Applications}
|
|
|
|
\begin{enumerate}
|
|
|
|
\item<+-> integrate \(f\) over some volume \(\Omega\)
|
|
|
|
\item<+-> treat \(f\) as distribution and take random samples
|
|
|
|
\end{enumerate}
|
|
|
|
\end{block}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\subsection{Integration}
|
|
|
|
\note[itemize]{
|
|
|
|
\item omitting details (law of big numbers, central limit theorem)
|
|
|
|
\item at least three angles of attack
|
2020-06-22 20:45:10 +02:00
|
|
|
\item some sort of importance sampling, volume: stratified sampling }
|
2020-06-21 21:25:59 +02:00
|
|
|
\begin{frame}
|
|
|
|
\begin{itemize}
|
|
|
|
\item<+-> we have:
|
|
|
|
\(f\colon \vb{x}\in\Omega\subset\mathbb{R}^n\mapsto\mathbb{R}\)
|
|
|
|
and \(\rho\colon \vb{x}\in\Omega\mapsto\mathbb{R}_{> 0}\) with
|
|
|
|
\(\int_{\Omega}\rho(\vb{x})\dd{\vb{x}} = 1\).
|
|
|
|
\item<+-> we seek:
|
|
|
|
\begin{equation}
|
|
|
|
\label{eq:baseintegral}
|
|
|
|
I = \int_\Omega f(\vb{x}) \dd{\vb{x}}
|
|
|
|
\onslide<+->{= \int_\Omega
|
|
|
|
\qty[\frac{f(\vb{x})}{\rho(\vb{x})}] \rho(\vb{x}) \dd{\vb{x}} = \EX{\frac{F}{\Rho}}}
|
|
|
|
\end{equation}
|
|
|
|
\item<+-> numeric approximation:
|
|
|
|
\begin{equation}
|
|
|
|
\label{eq:approxexp}
|
|
|
|
\EX{\frac{F}{\Rho}} \approx
|
|
|
|
\frac{1}{N}\sum_{i=1}^N\frac{f(\vb{x_i})}{\rho(\vb{x_i})}
|
|
|
|
\xrightarrow{N\rightarrow\infty} I
|
|
|
|
\end{equation}
|
|
|
|
\item<+-> error approximation:
|
|
|
|
\begin{align}
|
|
|
|
\sigma_I^2 &= \frac{\textcolor<+->{red}{\sigma^2}}{\textcolor<.->{blue}{N}} \\
|
|
|
|
\sigma^2 &= \VAR{\frac{F}{\Rho}} = \int_{\textcolor<+(3)->{blue}{\Omega}} \qty[I -
|
2020-06-22 20:45:10 +02:00
|
|
|
\frac{f(\vb{x})}{\textcolor<+->{blue}{\rho(\vb{x})}}]^2
|
|
|
|
\textcolor<.->{blue}{\rho(\vb{x})} \textcolor<+->{blue}{\dd{\vb{x}}} \approx \frac{1}{N - 1}\sum_i \qty[I -
|
|
|
|
\frac{f(\vb{x_i})}{\rho(\vb{x_i})}]^2 \label{eq:varI-approx}
|
2020-06-21 21:25:59 +02:00
|
|
|
\end{align}
|
|
|
|
\end{itemize}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}{Change of Variables}
|
|
|
|
Choose \(\rho(\vb{x}) = \frac{1}{\abs{\Omega}}\)
|
|
|
|
\onslide<2->{\(\implies I=\frac{\abs{\Omega}}{N}\sum_{i=1}^N
|
|
|
|
f(\vb{x_i})=\abs{\Omega}\cdot\bar{f}\) and
|
|
|
|
\(\VAR{\frac{F}{P}}\approx\frac{\abs{\Omega}^2}{N-1}\sum_{i}\qty[f(\vb{x}_i)
|
|
|
|
- \bar{f}]^2\)}
|
|
|
|
\begin{block}{Results}
|
|
|
|
\begin{itemize}
|
|
|
|
\item<3-> integrating \(\dv{\sigma}{\theta}\) with target error of
|
|
|
|
\(\sigma = \SI{1e-3}{\pico\barn}\) takes
|
|
|
|
\result{xs/python/xs_mc_N} samples
|
|
|
|
\item<4-> integrating \(\dv{\sigma}{\eta}\) takes just
|
|
|
|
\result{xs/python/xs_mc_eta_N} samples
|
|
|
|
\end{itemize}
|
|
|
|
\end{block}
|
|
|
|
\begin{figure}[hb]
|
|
|
|
\centering \onslide<3->{
|
|
|
|
\begin{subfigure}[c]{.4\textwidth}
|
|
|
|
\centering \plot[scale=.6]{xs/xs_integrand}
|
|
|
|
\end{subfigure}
|
|
|
|
} \onslide<4->{
|
|
|
|
\begin{subfigure}[c]{.4\textwidth}
|
|
|
|
\centering \plot[scale=.6]{xs/xs_integrand_eta}
|
|
|
|
\end{subfigure}
|
|
|
|
}
|
|
|
|
\end{figure}
|
|
|
|
\end{frame}
|
|
|
|
|
2020-06-22 20:45:10 +02:00
|
|
|
\note[itemize]{
|
|
|
|
\item proposed by G. Peter Lepage (slac) 1976
|
|
|
|
\item own implementation!!!
|
|
|
|
}
|
|
|
|
\begin{frame}{\vegas\ Algorithm \cite{Lepage:19781an}}
|
|
|
|
|
2020-06-21 21:25:59 +02:00
|
|
|
\begin{columns}
|
|
|
|
\begin{column}{.5\textwidth}
|
|
|
|
\begin{block}{Idea}
|
|
|
|
\begin{enumerate}
|
|
|
|
\item subdivide integration volume into grid, take equal
|
|
|
|
number of samples in each hypercube \(\iff\) define \(\rho\)
|
|
|
|
as step function
|
|
|
|
\item iteratively approximate optimal \(\rho = f(\vb{x})/I\)
|
|
|
|
with step function
|
2020-06-22 20:45:10 +02:00
|
|
|
\item this is quite efficient when \(n\geq 4\)
|
2020-06-21 21:25:59 +02:00
|
|
|
\end{enumerate}
|
|
|
|
\end{block}
|
2020-06-22 20:45:10 +02:00
|
|
|
\pause
|
2020-06-21 21:25:59 +02:00
|
|
|
\begin{block}{Result}
|
2020-06-22 20:45:10 +02:00
|
|
|
Total function evaluations:
|
|
|
|
\result{xs/python/xs_mc_θ_vegas_N}\\
|
|
|
|
(for same accuracy as before)
|
2020-06-21 21:25:59 +02:00
|
|
|
\end{block}
|
|
|
|
\end{column}
|
|
|
|
\begin{column}{.5\textwidth}
|
|
|
|
\begin{figure}[ht]
|
|
|
|
\centering \plot[scale=.6]{xs/xs_integrand_vegas}
|
|
|
|
\caption{\(2\pi\dv{\sigma}{\theta}\) scaled to increments
|
|
|
|
found by \vegas}
|
|
|
|
\end{figure}
|
|
|
|
\end{column}
|
|
|
|
\end{columns}
|
|
|
|
\end{frame}
|
2020-06-22 20:45:10 +02:00
|
|
|
|
|
|
|
\subsection{Sampling}
|
|
|
|
|
2020-06-23 18:13:58 +02:00
|
|
|
\begin{frame}{Why Samples?}
|
|
|
|
\begin{itemize}[<+->]
|
|
|
|
\item same format as experimental data: direct comparison
|
|
|
|
\item easy to generate distributions for other observables
|
|
|
|
\item events can be ``dressed'' with additional effects
|
|
|
|
\end{itemize}
|
|
|
|
\end{frame}
|
2020-06-22 20:45:10 +02:00
|
|
|
\note[itemize]{
|
|
|
|
\item prop. to density
|
|
|
|
\item generalization to n dim is easy
|
|
|
|
\item idea -> cumulative propability the same
|
|
|
|
}
|
|
|
|
\begin{frame}
|
|
|
|
\begin{itemize}[<+->]
|
|
|
|
\item we have: \(f\colon x\in\Omega\mapsto\mathbb{R}_{>0}\)
|
|
|
|
(choose \(\Omega = [0, 1]\)) and uniformly random samples \(\{x_i\}\)
|
|
|
|
\item we seek: a sample \(\{y_i\}\) distributed according to \(f\)
|
|
|
|
\end{itemize}
|
|
|
|
\begin{block}<+->{Basic Idea}
|
|
|
|
\begin{itemize}[<+->]
|
|
|
|
\item<.-> let \(x\) be sample of uniform distribution, solve
|
|
|
|
\[\int_{0}^{y}f(x')\dd{x'} = x\cdot\int_0^1f(x')\dd{x'} =
|
|
|
|
x\cdot A\] for y to obtain sample of \(f/A\)
|
|
|
|
\item let \(F\) be the antiderivative of \(f\), then
|
|
|
|
\(y=F^{-1}(x\cdot A + F(0))\)
|
|
|
|
\begin{itemize}
|
|
|
|
\item sometimes analytical form available
|
|
|
|
\item otherwise tackle that numerically
|
|
|
|
\end{itemize}
|
|
|
|
\end{itemize}
|
|
|
|
\end{block}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}{Hit or Miss}
|
|
|
|
\centering
|
|
|
|
\animategraphics[loop,scale=.4,autoplay,palindrome]{5}{pi/pi-}{0}{9}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}{Hit or Miss}
|
|
|
|
\begin{block}{Basic Idea}
|
|
|
|
\begin{itemize}[<+->]
|
|
|
|
\item take samples \({x_i}\) distributed according to \(g/B\),
|
|
|
|
where \(B=\int_0^1g(x)\dd{x}\) and
|
|
|
|
\(\forall x\in\Omega\colon g(x)\geq f(x)\)
|
|
|
|
\item accept each sample with the probability~\(f(x_i)/g(x_i)\)
|
|
|
|
(importance sampling)
|
|
|
|
\item total probability of accepting a sample: \(\mathfrak{e} =
|
|
|
|
A/B < 1\) (efficiency)
|
|
|
|
\item simplest choice \(g=\max_{x\in\Omega}f(x)=f_{\text{max}}\)
|
|
|
|
\item again: efficiency gain through reduction of variance
|
|
|
|
\end{itemize}
|
|
|
|
\end{block}
|
|
|
|
|
|
|
|
\begin{block}<+->{Results with \(g=f_{\text{max}}\) }
|
|
|
|
\begin{itemize}[<+->]
|
|
|
|
\item<.-> sampling \(\dv{\sigma}{\cos\theta}\):
|
|
|
|
\result{xs/python/naive_th_samp}
|
|
|
|
\item sampling \(\dv{\sigma}{\cos\theta}\):
|
|
|
|
\result{xs/python/eta_eff}
|
|
|
|
\end{itemize}
|
|
|
|
\end{block}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}{Hit or Miss}
|
|
|
|
\begin{columns}
|
|
|
|
\begin{column}{.4\textwidth}
|
|
|
|
\begin{block}<+->{Results with \(g=a\cdot x^2 + b\)} Modest
|
|
|
|
efficiency gain: \result{xs/python/tuned_th_samp}
|
|
|
|
\end{block}
|
|
|
|
\begin{itemize}
|
|
|
|
\item<+-> Of course, we can use \vegas\ to provide a better \(g\).
|
|
|
|
\end{itemize}
|
|
|
|
\end{column}
|
|
|
|
\begin{column}{.6\textwidth}
|
|
|
|
\begin{figure}[ht]
|
|
|
|
\centering \plot[scale=.8]{xs_sampling/upper_bound}
|
|
|
|
\caption{The distribution \(\dv{\sigma}{\cos\theta}\) and an
|
|
|
|
upper bound of the form \(a + b\cdot x^2\).}
|
|
|
|
\end{figure}
|
|
|
|
\end{column}
|
|
|
|
\end{columns}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}{Stratified Sampling}
|
|
|
|
\begin{block}{Basic Idea}
|
|
|
|
\begin{itemize}
|
|
|
|
\item subdivide sampling volume \(\Omega\) into \(K\) subvolumes
|
|
|
|
\(\Omega_i\)
|
|
|
|
\item let \(A_i = \int_{\Omega_i}f(x)\dd{x}\)
|
|
|
|
\item take \(N_i=A_i \cdot N\) samples in each subvolume
|
|
|
|
\item efficiency is given by:
|
|
|
|
\(\mathfrak{e} = \frac{\sum_i A_i}{\sum_i A_i/\mathfrak{e}_i}\)
|
|
|
|
\end{itemize}
|
|
|
|
\(\implies\) can optimize in each subvolume independently
|
|
|
|
\end{block}
|
|
|
|
How do choose the \(\Omega_i\)? \pause {\huge\vegas! :-)}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\note[itemize]{
|
|
|
|
\item no need to know the jacobian ;)
|
|
|
|
}
|
|
|
|
\begin{frame}{Observables}
|
|
|
|
\begin{itemize}
|
2020-06-23 18:13:58 +02:00
|
|
|
\item we want: distributions of other observables \pause
|
2020-06-22 20:45:10 +02:00
|
|
|
\item turns out: simpliy piping samples \(\{x_i\}\) through a map
|
|
|
|
\(\gamma\colon\Omega\mapsto\mathbb{R}\) is enough
|
|
|
|
\end{itemize}
|
2020-06-23 18:13:58 +02:00
|
|
|
\pause
|
2020-06-22 20:45:10 +02:00
|
|
|
\begin{figure}[p]
|
|
|
|
\centering
|
|
|
|
\begin{subfigure}[b]{.49\textwidth}
|
|
|
|
\centering \plot[scale=.5]{xs_sampling/histo_sherpa_eta}
|
2020-06-23 18:13:58 +02:00
|
|
|
\caption{histogram of the pseudo-rapidity (\(\eta\))}
|
2020-06-22 20:45:10 +02:00
|
|
|
\end{subfigure}
|
|
|
|
\begin{subfigure}[b]{.49\textwidth}
|
|
|
|
\centering \plot[scale=.5]{xs_sampling/histo_sherpa_pt}
|
2020-06-23 18:13:58 +02:00
|
|
|
\caption{histogram of the transverse momentum (\(\pt\))}
|
2020-06-22 20:45:10 +02:00
|
|
|
\end{subfigure}
|
|
|
|
\end{figure}
|
|
|
|
\end{frame}
|
|
|
|
|
2020-06-23 18:13:58 +02:00
|
|
|
\section{A Simple Proton Scattering Event Generator}
|
|
|
|
|
|
|
|
\subsection{Parton Density Functions}
|
|
|
|
\begin{frame}
|
|
|
|
\begin{itemize}[<+->]
|
|
|
|
\item free quarks are not observed \(\implies\) we have to look at
|
|
|
|
hadron collisions
|
|
|
|
\item parton density functions (PDFs) are a necessary tool
|
|
|
|
\end{itemize}
|
|
|
|
\pause
|
|
|
|
\begin{block}{Basic Idea (Leading Order)}
|
|
|
|
\begin{itemize}
|
|
|
|
\item probability density to encounter a parton \(i\) at momentum
|
|
|
|
fraction \(x\) and factorization scale \(Q^2\): given by
|
|
|
|
\(f_i(x;Q^2)\)
|
|
|
|
\item total cross section for a partonic process in the hadron
|
|
|
|
collision:
|
|
|
|
\begin{equation}
|
|
|
|
\label{eq:pdf-xs}
|
|
|
|
\sigma_{ij} = \int f_i\qty(x_1;Q^2) f_j\qty(x_2;Q^2) \hat{\sigma}_{ij}\qty(x_1,
|
|
|
|
x_2, Q^2)\dd{x_1}\dd{x_2}
|
|
|
|
\end{equation}
|
|
|
|
\end{itemize}
|
|
|
|
\end{block}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\subsection{Implementation}
|
|
|
|
\note[itemize]{
|
|
|
|
\item took longest time :P
|
|
|
|
}
|
|
|
|
\begin{frame}
|
|
|
|
\begin{columns}
|
|
|
|
\begin{column}{.4\textwidth}
|
|
|
|
\begin{block}{What do we need?}
|
|
|
|
\begin{itemize}[<+->]
|
|
|
|
\item partonic cross section and kinematics in lab frame
|
|
|
|
\item \(Q^2\pause = 2x_1x_2E_p^2\) \pause
|
|
|
|
\item PDF\pause :
|
|
|
|
\texttt{NNPDF31\_lo\_as\_0118}~\cite{NNPDF:2017pd} \pause
|
|
|
|
\item beam energies and cuts:\pause
|
|
|
|
\begin{itemize}
|
|
|
|
\item \result{xs/python/pdf/e_proton}
|
|
|
|
\item \result{xs/python/pdf/eta} and
|
|
|
|
\result{xs/python/pdf/min_pT}
|
|
|
|
\end{itemize}
|
|
|
|
\item integration and sampling method: \pause \vegas\ +
|
|
|
|
stratified sampling
|
|
|
|
\end{itemize}
|
|
|
|
\end{block}
|
|
|
|
\end{column}
|
|
|
|
\begin{column}{.6\textwidth}
|
|
|
|
\only<+>{
|
|
|
|
\begin{figure}
|
|
|
|
\centering \plot[width=\columnwidth]{pdf/dist3d_x2_const}
|
|
|
|
\caption{\label{fig:dist-pdf}Differential cross section
|
|
|
|
convolved with PDFs for fixed \protect
|
|
|
|
\result{xs/python/pdf/second_x} in picobarn.}
|
|
|
|
\end{figure}
|
|
|
|
}
|
|
|
|
\only<+>{
|
|
|
|
\begin{figure}
|
|
|
|
\centering \plot[width=\columnwidth]{pdf/dist3d_eta_const}
|
|
|
|
\caption{\label{fig:dist-pdf-fixed-eta}Differential cross section
|
|
|
|
convolved with PDFs for fixed \protect
|
|
|
|
\result{xs/python/pdf/plot_eta} in picobarn.}
|
|
|
|
\end{figure}
|
|
|
|
}
|
|
|
|
\end{column}
|
|
|
|
\end{columns}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\subsection{Results}
|
|
|
|
\begin{frame}{Cross Section}
|
|
|
|
\begin{center}
|
|
|
|
{\huge\result{xs/python/pdf/my_sigma}}
|
|
|
|
\end{center}
|
|
|
|
\begin{itemize}
|
|
|
|
\item compatible with \sherpa\
|
|
|
|
\item achieved \result{xs/python/pdf/samp_eff}
|
|
|
|
\item using \result{xs/python/pdf/num_increments} hypercubes
|
|
|
|
\end{itemize}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}[allowframebreaks]{Observables}
|
|
|
|
\begin{figure}[hp]
|
|
|
|
\centering
|
|
|
|
\begin{subfigure}{.49\textwidth}
|
|
|
|
\centering \plot[width=1\columnwidth]{pdf/eta_hist}
|
|
|
|
\end{subfigure}
|
|
|
|
\begin{subfigure}{.49\textwidth}
|
|
|
|
\centering \plot[width=1\columnwidth]{pdf/cos_theta_hist}
|
|
|
|
\end{subfigure}
|
|
|
|
\begin{subfigure}{.49\textwidth}
|
|
|
|
\centering \plot[width=1\columnwidth]{pdf/pt_hist}
|
|
|
|
\end{subfigure}
|
|
|
|
\begin{subfigure}{.49\textwidth}
|
|
|
|
\centering \plot[width=1\columnwidth]{pdf/inv_m_hist}
|
|
|
|
\end{subfigure}
|
|
|
|
\end{figure}
|
|
|
|
\end{frame}
|
|
|
|
|
2020-06-22 20:45:10 +02:00
|
|
|
\begin{frame}[allowframebreaks]
|
|
|
|
\frametitle{References}
|
|
|
|
\printbibliography
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\appendix
|
|
|
|
\section{Appendix}
|
|
|
|
|
|
|
|
\subsection{More on \vegas}
|
|
|
|
|
|
|
|
\begin{frame}{\vegas Details}
|
|
|
|
\begin{columns}
|
|
|
|
\begin{column}{.6\textwidth}
|
|
|
|
\begin{block}{Algorithm 1D}
|
|
|
|
\begin{enumerate}
|
|
|
|
\item start with \(N\) evenly spaced increments
|
|
|
|
\(\{[x_i, x_{i+1}]\}_{i\in\overline{1,N}}\)
|
|
|
|
\item calculate the integral weights
|
|
|
|
\(w_i = \abs{\int_{x_i}^{x_{i+1}}f(x)\dd{x}}\) and define
|
|
|
|
\(W=\sum_iw_i\)
|
|
|
|
\begin{itemize}
|
|
|
|
\item this is done with ordinary MC integration
|
|
|
|
\end{itemize}
|
|
|
|
\item calculate subdivide the \(i\)-th increment into
|
|
|
|
\(K\frac{w_i}{W}\) increments (round up), where
|
|
|
|
\(K = \mathcal{O}(1000)\)
|
|
|
|
\item amalgamate the new increments into \(N\) groups \(=\)
|
|
|
|
new increments
|
|
|
|
\end{enumerate}
|
|
|
|
\end{block}
|
|
|
|
\end{column}
|
|
|
|
\pause
|
|
|
|
\begin{column}{.4\textwidth}
|
|
|
|
\begin{block}{Advantages}
|
|
|
|
\begin{itemize}
|
|
|
|
\item number of \(f\) evaluations independent of number of
|
|
|
|
hypercubes
|
|
|
|
\item adaption itself is adaptive
|
|
|
|
\item \textcolor{red}{the advantages only show if \(n\)
|
|
|
|
``high''.}
|
|
|
|
\end{itemize}
|
|
|
|
\end{block}
|
|
|
|
\end{column}
|
|
|
|
\end{columns}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}
|
|
|
|
\begin{figure}[ht]
|
|
|
|
\centering \plot[scale=.9]{xs/xs_integrand_vegas}
|
|
|
|
\caption{\(2\pi\dv{\sigma}{\theta}\) scaled to increments found by
|
|
|
|
\vegas}
|
|
|
|
\end{figure}
|
|
|
|
\end{frame}
|
2020-06-23 18:13:58 +02:00
|
|
|
|
2020-06-22 20:45:10 +02:00
|
|
|
\begin{frame}{\vegas\ + Hit or Miss}
|
|
|
|
\begin{figure}[ht]
|
|
|
|
\centering
|
|
|
|
\begin{subfigure}{.49\textwidth}
|
|
|
|
\centering
|
|
|
|
\plot[scale=.8]{xs_sampling/vegas_strat_dist}
|
|
|
|
\caption[The distribution for \(\cos\theta\), derived from the
|
|
|
|
differential cross-section and the \vegas-weighted
|
|
|
|
distribution]{\label{fig:vegasdist} The distribution for
|
|
|
|
\(\cos\theta\) and the \vegas-weighted
|
|
|
|
distribution.}
|
|
|
|
\end{subfigure}
|
|
|
|
\begin{subfigure}{.49\textwidth}
|
|
|
|
\centering
|
|
|
|
\plot[scale=.8]{xs_sampling/vegas_rho}
|
|
|
|
\caption[The weighting distribution generated by
|
|
|
|
\vegas.]{\label{fig:vegasrho} The weighting distribution generated
|
|
|
|
by \vegas. It is clear, that it closely follows the original
|
|
|
|
distribution.}
|
|
|
|
\end{subfigure}
|
|
|
|
\caption{\label{fig:vegas-weighting} \vegas-weighted distribution
|
|
|
|
and weighting distribution.}
|
|
|
|
\end{figure}
|
|
|
|
\end{frame}
|
2020-06-20 19:03:02 +02:00
|
|
|
\end{document}
|