2022-03-18 15:34:49 +01:00
|
|
|
|
r"""
|
|
|
|
|
Operators for a general model of one qubit coupled to a single bath.
|
|
|
|
|
The energy scale is the characteristic energy of the qubit :math:`ω =
|
|
|
|
|
1`.
|
|
|
|
|
|
|
|
|
|
The total hamiltonian has the form
|
|
|
|
|
|
|
|
|
|
.. math::
|
|
|
|
|
|
|
|
|
|
H=\frac{1}{2}σ_z
|
|
|
|
|
+ \sqrt{δ} ∑_λ (L^† g_λ b^i_λ + L g_λ^\ast b^{i,†}_λ) + H_B.
|
|
|
|
|
|
|
|
|
|
The BCF is normalized so that the integral over its imaginary part is
|
|
|
|
|
:math:`-1`. The bath coupling strength is divided by :math:`\langle
|
|
|
|
|
L L^†\rangle 2` with respect to the inital state to normalize the
|
|
|
|
|
interaction energy to about the order of :math:`ω=1`.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass, field
|
2022-03-21 13:40:38 +01:00
|
|
|
|
import hopsflow
|
2022-03-18 15:34:49 +01:00
|
|
|
|
from numpy.typing import NDArray
|
|
|
|
|
from typing import Any, Optional, SupportsFloat
|
|
|
|
|
import hops.util.bcf
|
|
|
|
|
import hops.util.bcf_fits
|
|
|
|
|
import hops.core.hierarchy_parameters as params
|
|
|
|
|
import numpy as np
|
|
|
|
|
import qutip as qt
|
|
|
|
|
from hops.util.abstract_truncation_scheme import TruncationScheme_Simplex
|
|
|
|
|
from hops.util.truncation_schemes import (
|
|
|
|
|
TruncationScheme_Power_multi,
|
|
|
|
|
BathMemory,
|
|
|
|
|
)
|
|
|
|
|
import stocproc as sp
|
|
|
|
|
|
|
|
|
|
from beartype import beartype
|
|
|
|
|
from utility import StocProcTolerances
|
|
|
|
|
from model_base import Model
|
|
|
|
|
import scipy.special
|
2022-03-21 13:40:38 +01:00
|
|
|
|
import hopsflow
|
2022-03-18 15:34:49 +01:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@beartype
|
|
|
|
|
@dataclass(eq=False)
|
|
|
|
|
class QubitModel(Model):
|
|
|
|
|
"""
|
|
|
|
|
A class to dynamically calculate all the one qubit model parameters and
|
|
|
|
|
generate the HOPS configuration.
|
|
|
|
|
|
|
|
|
|
All attributes can be changed after initialization.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
δ: SupportsFloat = 0.1
|
|
|
|
|
"""The bath coupling factor."""
|
|
|
|
|
|
|
|
|
|
ω_c: SupportsFloat = 2
|
|
|
|
|
"""The cutoff frequency :math:`ω_c`."""
|
|
|
|
|
|
|
|
|
|
s: SupportsFloat = 1
|
|
|
|
|
"""The BCF s parameter."""
|
|
|
|
|
|
2022-03-21 13:40:38 +01:00
|
|
|
|
L: qt.Qobj = field(default_factory=lambda: 1 / 2 * qt.sigmax()) # type: ignore
|
2022-03-18 15:34:49 +01:00
|
|
|
|
"""
|
|
|
|
|
The :math:`L` coupling operator with shape ``(2, 2)``.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
T: SupportsFloat = 0
|
|
|
|
|
"""The temperature of the bath."""
|
|
|
|
|
|
|
|
|
|
###########################################################################
|
|
|
|
|
# HOPS Parameters #
|
|
|
|
|
###########################################################################
|
|
|
|
|
|
|
|
|
|
description: str = ""
|
|
|
|
|
"""A free-form description of the model instance."""
|
|
|
|
|
|
|
|
|
|
bcf_terms: int = 5
|
|
|
|
|
"""How many bcf terms to use in the expansions of the BCF."""
|
|
|
|
|
|
|
|
|
|
ψ_0: qt.Qobj = qt.basis([2], [1])
|
|
|
|
|
"""The initial state."""
|
|
|
|
|
|
|
|
|
|
t_max: SupportsFloat = 10
|
|
|
|
|
"""The maximum simulation time."""
|
|
|
|
|
|
|
|
|
|
resolution: SupportsFloat = 0.1
|
|
|
|
|
"""The time resolution of the simulation result."""
|
|
|
|
|
|
|
|
|
|
k_fac: SupportsFloat = 1.7
|
|
|
|
|
"""The k_fac parameters for the truncation scheme.
|
|
|
|
|
|
|
|
|
|
See
|
|
|
|
|
:any:`hops.util.truncation_schemes.TruncationScheme_Power_multi`.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
k_max: int = 10
|
|
|
|
|
"""The kmax parameter for the truncation scheme.
|
|
|
|
|
|
|
|
|
|
See
|
|
|
|
|
:any:`hops.util.abstract_truncation_scheme.TruncationScheme_Simplex`
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
influence_tolerance: SupportsFloat = 1e-2
|
|
|
|
|
"""The ``influecne_tolerance`` parameter for the truncation
|
|
|
|
|
scheme.
|
|
|
|
|
|
|
|
|
|
See :any:`hops.util.truncation_schemes.BathMemory`.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
truncation_scheme: str = "bath_memory"
|
|
|
|
|
"""The truncation scheme to use."""
|
|
|
|
|
|
|
|
|
|
solver_args: dict[str, Any] = field(default_factory=dict)
|
|
|
|
|
"""Extra arguments for :any:`scipy.integrate.solve_ivp`."""
|
|
|
|
|
|
|
|
|
|
driving_process_tolerance: StocProcTolerances = field(
|
|
|
|
|
default_factory=lambda: StocProcTolerances()
|
|
|
|
|
)
|
|
|
|
|
"""
|
|
|
|
|
The integration and interpolation tolerance for the driving
|
|
|
|
|
processes.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
thermal_process_tolerance: StocProcTolerances = field(
|
|
|
|
|
default_factory=lambda: StocProcTolerances()
|
|
|
|
|
)
|
|
|
|
|
"""
|
|
|
|
|
The integration and interpolation tolerance for the thermal noise
|
|
|
|
|
processes.
|
|
|
|
|
"""
|
|
|
|
|
|
2022-03-21 13:40:38 +01:00
|
|
|
|
@property
|
|
|
|
|
def coupling_operators(self) -> list[np.ndarray]:
|
|
|
|
|
"""The bath coupling operators :math:`L`."""
|
|
|
|
|
return [self.L.full()]
|
|
|
|
|
|
2022-03-18 15:34:49 +01:00
|
|
|
|
@property
|
|
|
|
|
def system(self) -> qt.Qobj:
|
|
|
|
|
"""The system hamiltonian."""
|
|
|
|
|
|
|
|
|
|
return 1 / 2 * qt.sigmaz() # type: ignore
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def bcf_norm(self) -> float:
|
|
|
|
|
"""The normalization factor for the BCF.
|
|
|
|
|
|
|
|
|
|
It is not used when generating the stochastic process due to
|
|
|
|
|
numerical reasons. It is being incorporated into the
|
|
|
|
|
:any:`bcf_scale`.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
return (
|
|
|
|
|
np.pi
|
|
|
|
|
* float(self.s)
|
|
|
|
|
/ (
|
|
|
|
|
scipy.special.gamma(float(self.s) + 1)
|
|
|
|
|
* float(self.ω_c) ** float(self.s)
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def bcf_scale(self) -> float:
|
|
|
|
|
"""
|
|
|
|
|
The BCF scaling factor of the BCF.
|
|
|
|
|
"""
|
|
|
|
|
|
2022-03-21 13:40:38 +01:00
|
|
|
|
eval = qt.expect(self.L * self.L.dag() + self.L.dag() * self.L, self.ψ_0)
|
2022-03-18 15:34:49 +01:00
|
|
|
|
assert isinstance(eval, float)
|
|
|
|
|
|
2022-03-21 13:40:38 +01:00
|
|
|
|
return float(self.δ) / eval.real * self.bcf_norm
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def bcf_scales(self) -> list[float]:
|
|
|
|
|
"""The scaling factors for the bath correlation functions."""
|
|
|
|
|
|
|
|
|
|
return [self.bcf_scale]
|
2022-03-18 15:34:49 +01:00
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def bcf(self) -> hops.util.bcf.OhmicBCF_zeroTemp:
|
|
|
|
|
"""
|
|
|
|
|
The normalized zero temperature BCF.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
return hops.util.bcf.OhmicBCF_zeroTemp(
|
|
|
|
|
s=self.s, eta=1, w_c=self.ω_c, normed=False
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def spectral_density(self) -> hops.util.bcf.OhmicSD_zeroTemp:
|
|
|
|
|
"""
|
|
|
|
|
The normalized zero temperature spectral density.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
return hops.util.bcf.OhmicSD_zeroTemp(
|
|
|
|
|
s=float(self.s),
|
|
|
|
|
w_c=float(self.ω_c),
|
|
|
|
|
eta=1,
|
|
|
|
|
normed=False,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def thermal_correlations(
|
|
|
|
|
self,
|
|
|
|
|
) -> Optional[hops.util.bcf.Ohmic_StochasticPotentialCorrelations]:
|
|
|
|
|
"""
|
|
|
|
|
The normalized thermal noise corellation function.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
if self.T == 0:
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
return hops.util.bcf.Ohmic_StochasticPotentialCorrelations(
|
|
|
|
|
s=self.s,
|
|
|
|
|
eta=1,
|
|
|
|
|
w_c=self.ω_c,
|
|
|
|
|
normed=False,
|
|
|
|
|
beta=1 / float(self.T),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def thermal_spectral_density(
|
|
|
|
|
self,
|
|
|
|
|
) -> Optional[hops.util.bcf.Ohmic_StochasticPotentialDensity]:
|
|
|
|
|
"""
|
|
|
|
|
The normalized thermal noise spectral density.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
if self.T == 0:
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
return hops.util.bcf.Ohmic_StochasticPotentialDensity(
|
|
|
|
|
s=self.s,
|
|
|
|
|
eta=1,
|
|
|
|
|
w_c=self.ω_c,
|
|
|
|
|
normed=False,
|
|
|
|
|
beta=1.0 / float(self.T),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def bcf_coefficients(
|
|
|
|
|
self, n: Optional[int] = None
|
2022-03-21 13:40:38 +01:00
|
|
|
|
) -> tuple[list[NDArray[np.complex128]], list[NDArray[np.complex128]]]:
|
2022-03-18 15:34:49 +01:00
|
|
|
|
"""
|
|
|
|
|
The normalizedzero temperature BCF fit coefficients
|
|
|
|
|
:math:`G_i,W_i` with ``n`` terms.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
n = n or self.bcf_terms
|
2022-03-21 13:40:38 +01:00
|
|
|
|
g, w = self.bcf.exponential_coefficients(n)
|
|
|
|
|
return ([g], [w])
|
2022-03-18 15:34:49 +01:00
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def basis(n: int = 1) -> qt.Qobj:
|
|
|
|
|
"""
|
|
|
|
|
A state with of the qubit in the state state ``n`` where ``1``
|
|
|
|
|
means down and ``0`` means up.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
return qt.basis([2], [n])
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def driving_process(self) -> sp.StocProc:
|
|
|
|
|
"""The driving stochastic process of the ``i``th bath."""
|
|
|
|
|
|
|
|
|
|
return sp.StocProc_FFT(
|
|
|
|
|
spectral_density=self.spectral_density,
|
|
|
|
|
alpha=self.bcf,
|
|
|
|
|
t_max=self.t_max,
|
|
|
|
|
intgr_tol=self.driving_process_tolerance.integration,
|
|
|
|
|
intpl_tol=self.driving_process_tolerance.interpolation,
|
|
|
|
|
negative_frequencies=False,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def thermal_process(self) -> Optional[sp.StocProc]:
|
2022-03-21 13:40:38 +01:00
|
|
|
|
"""The thermal noise stochastic process."""
|
2022-03-18 15:34:49 +01:00
|
|
|
|
|
|
|
|
|
if self.T == 0:
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
return sp.StocProc_TanhSinh(
|
|
|
|
|
spectral_density=self.thermal_spectral_density,
|
|
|
|
|
alpha=self.thermal_correlations,
|
|
|
|
|
t_max=self.t_max,
|
|
|
|
|
intgr_tol=self.thermal_process_tolerance.integration,
|
|
|
|
|
intpl_tol=self.thermal_process_tolerance.interpolation,
|
|
|
|
|
negative_frequencies=False,
|
|
|
|
|
)
|
|
|
|
|
|
2022-03-21 13:40:38 +01:00
|
|
|
|
@property
|
|
|
|
|
def thermal_processes(self) -> list[Optional[hopsflow.hopsflow.StocProc]]:
|
|
|
|
|
"""
|
|
|
|
|
The thermal noise stochastic processes for each bath.
|
|
|
|
|
:any:`None` means zero temperature.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
return [self.thermal_process]
|
|
|
|
|
|
2022-03-18 15:34:49 +01:00
|
|
|
|
###########################################################################
|
|
|
|
|
# Utility #
|
|
|
|
|
###########################################################################
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def hops_config(self):
|
|
|
|
|
"""
|
|
|
|
|
The hops :any:`hops.core.hierarchy_params.HIParams` parameter object
|
|
|
|
|
for this system.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
g, w = self.bcf_coefficients(self.bcf_terms)
|
|
|
|
|
|
|
|
|
|
system = params.SysP(
|
|
|
|
|
H_sys=self.system.full(),
|
|
|
|
|
L=[self.L.full()],
|
2022-03-21 13:40:38 +01:00
|
|
|
|
g=g,
|
|
|
|
|
w=w,
|
2022-03-18 15:34:49 +01:00
|
|
|
|
bcf_scale=[self.bcf_scale],
|
|
|
|
|
T=[self.T],
|
|
|
|
|
description=self.description,
|
|
|
|
|
psi0=self.ψ_0.full().flatten(),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
trunc_scheme = TruncationScheme_Power_multi.from_g_w(
|
|
|
|
|
g=system.g,
|
|
|
|
|
w=system.w,
|
|
|
|
|
p=[1, 1],
|
|
|
|
|
q=[0.5, 0.5],
|
|
|
|
|
kfac=[float(self.k_fac)],
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if self.truncation_scheme == "bath_memory":
|
|
|
|
|
trunc_scheme = BathMemory.from_system(
|
|
|
|
|
system,
|
|
|
|
|
nonlinear=True,
|
|
|
|
|
influence_tolerance=float(self.influence_tolerance),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if self.truncation_scheme == "simplex":
|
|
|
|
|
trunc_scheme = TruncationScheme_Simplex(self.k_max)
|
|
|
|
|
|
|
|
|
|
hierarchy = params.HiP(
|
|
|
|
|
seed=0,
|
|
|
|
|
nonlinear=True,
|
|
|
|
|
terminator=False,
|
|
|
|
|
result_type=params.ResultType.ZEROTH_AND_FIRST_ORDER,
|
|
|
|
|
accum_only=False,
|
|
|
|
|
rand_skip=None,
|
|
|
|
|
truncation_scheme=trunc_scheme,
|
|
|
|
|
save_therm_rng_seed=True,
|
|
|
|
|
auto_normalize=True,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
default_solver_args = dict(rtol=1e-8, atol=1e-8)
|
|
|
|
|
default_solver_args.update(self.solver_args)
|
|
|
|
|
|
|
|
|
|
integration = params.IntP(
|
|
|
|
|
t_max=float(self.t_max),
|
|
|
|
|
t_steps=int(float(self.t_max) / float(self.resolution)) + 1,
|
|
|
|
|
**default_solver_args,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return params.HIParams(
|
|
|
|
|
SysP=system,
|
|
|
|
|
IntP=integration,
|
|
|
|
|
HiP=hierarchy,
|
|
|
|
|
Eta=[self.driving_process],
|
|
|
|
|
EtaTherm=[self.thermal_process],
|
|
|
|
|
)
|