mirror of
https://github.com/vale981/two_qubit_model
synced 2025-03-04 17:21:43 -05:00
add one qubit model
This commit is contained in:
parent
400c6a59bb
commit
9eccd57d85
2 changed files with 382 additions and 0 deletions
344
one_qubit_model.py
Normal file
344
one_qubit_model.py
Normal file
|
@ -0,0 +1,344 @@
|
|||
r"""
|
||||
Operators for a general model of one qubit coupled to a single bath.
|
||||
The energy scale is the characteristic energy of the qubit :math:`ω =
|
||||
1`.
|
||||
|
||||
The total hamiltonian has the form
|
||||
|
||||
.. math::
|
||||
|
||||
H=\frac{1}{2}σ_z
|
||||
+ \sqrt{δ} ∑_λ (L^† g_λ b^i_λ + L g_λ^\ast b^{i,†}_λ) + H_B.
|
||||
|
||||
The BCF is normalized so that the integral over its imaginary part is
|
||||
:math:`-1`. The bath coupling strength is divided by :math:`\langle
|
||||
L L^†\rangle 2` with respect to the inital state to normalize the
|
||||
interaction energy to about the order of :math:`ω=1`.
|
||||
"""
|
||||
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from numpy.typing import NDArray
|
||||
from typing import Any, Optional, SupportsFloat
|
||||
import hops.util.bcf
|
||||
import hops.util.bcf_fits
|
||||
import hops.core.hierarchy_parameters as params
|
||||
import numpy as np
|
||||
import qutip as qt
|
||||
from hops.util.abstract_truncation_scheme import TruncationScheme_Simplex
|
||||
from hops.util.truncation_schemes import (
|
||||
TruncationScheme_Power_multi,
|
||||
BathMemory,
|
||||
)
|
||||
import stocproc as sp
|
||||
|
||||
from beartype import beartype
|
||||
from utility import StocProcTolerances
|
||||
from model_base import Model
|
||||
import scipy.special
|
||||
|
||||
|
||||
@beartype
|
||||
@dataclass(eq=False)
|
||||
class QubitModel(Model):
|
||||
"""
|
||||
A class to dynamically calculate all the one qubit model parameters and
|
||||
generate the HOPS configuration.
|
||||
|
||||
All attributes can be changed after initialization.
|
||||
"""
|
||||
|
||||
δ: SupportsFloat = 0.1
|
||||
"""The bath coupling factor."""
|
||||
|
||||
ω_c: SupportsFloat = 2
|
||||
"""The cutoff frequency :math:`ω_c`."""
|
||||
|
||||
s: SupportsFloat = 1
|
||||
"""The BCF s parameter."""
|
||||
|
||||
L: qt.Qobj = field(default_factory=lambda: qt.Qobj([[0.0, 1.0], [1.0, 0.0]]))
|
||||
"""
|
||||
The :math:`L` coupling operator with shape ``(2, 2)``.
|
||||
"""
|
||||
|
||||
T: SupportsFloat = 0
|
||||
"""The temperature of the bath."""
|
||||
|
||||
###########################################################################
|
||||
# HOPS Parameters #
|
||||
###########################################################################
|
||||
|
||||
description: str = ""
|
||||
"""A free-form description of the model instance."""
|
||||
|
||||
bcf_terms: int = 5
|
||||
"""How many bcf terms to use in the expansions of the BCF."""
|
||||
|
||||
ψ_0: qt.Qobj = qt.basis([2], [1])
|
||||
"""The initial state."""
|
||||
|
||||
t_max: SupportsFloat = 10
|
||||
"""The maximum simulation time."""
|
||||
|
||||
resolution: SupportsFloat = 0.1
|
||||
"""The time resolution of the simulation result."""
|
||||
|
||||
k_fac: SupportsFloat = 1.7
|
||||
"""The k_fac parameters for the truncation scheme.
|
||||
|
||||
See
|
||||
:any:`hops.util.truncation_schemes.TruncationScheme_Power_multi`.
|
||||
"""
|
||||
|
||||
k_max: int = 10
|
||||
"""The kmax parameter for the truncation scheme.
|
||||
|
||||
See
|
||||
:any:`hops.util.abstract_truncation_scheme.TruncationScheme_Simplex`
|
||||
"""
|
||||
|
||||
influence_tolerance: SupportsFloat = 1e-2
|
||||
"""The ``influecne_tolerance`` parameter for the truncation
|
||||
scheme.
|
||||
|
||||
See :any:`hops.util.truncation_schemes.BathMemory`.
|
||||
"""
|
||||
|
||||
truncation_scheme: str = "bath_memory"
|
||||
"""The truncation scheme to use."""
|
||||
|
||||
solver_args: dict[str, Any] = field(default_factory=dict)
|
||||
"""Extra arguments for :any:`scipy.integrate.solve_ivp`."""
|
||||
|
||||
driving_process_tolerance: StocProcTolerances = field(
|
||||
default_factory=lambda: StocProcTolerances()
|
||||
)
|
||||
"""
|
||||
The integration and interpolation tolerance for the driving
|
||||
processes.
|
||||
"""
|
||||
|
||||
thermal_process_tolerance: StocProcTolerances = field(
|
||||
default_factory=lambda: StocProcTolerances()
|
||||
)
|
||||
"""
|
||||
The integration and interpolation tolerance for the thermal noise
|
||||
processes.
|
||||
"""
|
||||
|
||||
@property
|
||||
def system(self) -> qt.Qobj:
|
||||
"""The system hamiltonian."""
|
||||
|
||||
return 1 / 2 * qt.sigmaz() # type: ignore
|
||||
|
||||
@property
|
||||
def bcf_norm(self) -> float:
|
||||
"""The normalization factor for the BCF.
|
||||
|
||||
It is not used when generating the stochastic process due to
|
||||
numerical reasons. It is being incorporated into the
|
||||
:any:`bcf_scale`.
|
||||
"""
|
||||
|
||||
return (
|
||||
np.pi
|
||||
* float(self.s)
|
||||
/ (
|
||||
scipy.special.gamma(float(self.s) + 1)
|
||||
* float(self.ω_c) ** float(self.s)
|
||||
)
|
||||
)
|
||||
|
||||
@property
|
||||
def bcf_scale(self) -> float:
|
||||
"""
|
||||
The BCF scaling factor of the BCF.
|
||||
"""
|
||||
|
||||
eval = qt.expect(self.L * self.L.dag(), self.ψ_0)
|
||||
assert isinstance(eval, float)
|
||||
|
||||
return float(self.δ) / (2 * eval.real) * self.bcf_norm
|
||||
|
||||
@property
|
||||
def bcf(self) -> hops.util.bcf.OhmicBCF_zeroTemp:
|
||||
"""
|
||||
The normalized zero temperature BCF.
|
||||
"""
|
||||
|
||||
return hops.util.bcf.OhmicBCF_zeroTemp(
|
||||
s=self.s, eta=1, w_c=self.ω_c, normed=False
|
||||
)
|
||||
|
||||
@property
|
||||
def spectral_density(self) -> hops.util.bcf.OhmicSD_zeroTemp:
|
||||
"""
|
||||
The normalized zero temperature spectral density.
|
||||
"""
|
||||
|
||||
return hops.util.bcf.OhmicSD_zeroTemp(
|
||||
s=float(self.s),
|
||||
w_c=float(self.ω_c),
|
||||
eta=1,
|
||||
normed=False,
|
||||
)
|
||||
|
||||
@property
|
||||
def thermal_correlations(
|
||||
self,
|
||||
) -> Optional[hops.util.bcf.Ohmic_StochasticPotentialCorrelations]:
|
||||
"""
|
||||
The normalized thermal noise corellation function.
|
||||
"""
|
||||
|
||||
if self.T == 0:
|
||||
return None
|
||||
|
||||
return hops.util.bcf.Ohmic_StochasticPotentialCorrelations(
|
||||
s=self.s,
|
||||
eta=1,
|
||||
w_c=self.ω_c,
|
||||
normed=False,
|
||||
beta=1 / float(self.T),
|
||||
)
|
||||
|
||||
@property
|
||||
def thermal_spectral_density(
|
||||
self,
|
||||
) -> Optional[hops.util.bcf.Ohmic_StochasticPotentialDensity]:
|
||||
"""
|
||||
The normalized thermal noise spectral density.
|
||||
"""
|
||||
|
||||
if self.T == 0:
|
||||
return None
|
||||
|
||||
return hops.util.bcf.Ohmic_StochasticPotentialDensity(
|
||||
s=self.s,
|
||||
eta=1,
|
||||
w_c=self.ω_c,
|
||||
normed=False,
|
||||
beta=1.0 / float(self.T),
|
||||
)
|
||||
|
||||
def bcf_coefficients(
|
||||
self, n: Optional[int] = None
|
||||
) -> tuple[NDArray[np.complex128], NDArray[np.complex128]]:
|
||||
"""
|
||||
The normalizedzero temperature BCF fit coefficients
|
||||
:math:`G_i,W_i` with ``n`` terms.
|
||||
"""
|
||||
|
||||
n = n or self.bcf_terms
|
||||
return self.bcf.exponential_coefficients(n)
|
||||
|
||||
@staticmethod
|
||||
def basis(n: int = 1) -> qt.Qobj:
|
||||
"""
|
||||
A state with of the qubit in the state state ``n`` where ``1``
|
||||
means down and ``0`` means up.
|
||||
"""
|
||||
|
||||
return qt.basis([2], [n])
|
||||
|
||||
@property
|
||||
def driving_process(self) -> sp.StocProc:
|
||||
"""The driving stochastic process of the ``i``th bath."""
|
||||
|
||||
return sp.StocProc_FFT(
|
||||
spectral_density=self.spectral_density,
|
||||
alpha=self.bcf,
|
||||
t_max=self.t_max,
|
||||
intgr_tol=self.driving_process_tolerance.integration,
|
||||
intpl_tol=self.driving_process_tolerance.interpolation,
|
||||
negative_frequencies=False,
|
||||
)
|
||||
|
||||
@property
|
||||
def thermal_process(self) -> Optional[sp.StocProc]:
|
||||
"""The thermal noise stochastic process of the ``i``th bath."""
|
||||
|
||||
if self.T == 0:
|
||||
return None
|
||||
|
||||
return sp.StocProc_TanhSinh(
|
||||
spectral_density=self.thermal_spectral_density,
|
||||
alpha=self.thermal_correlations,
|
||||
t_max=self.t_max,
|
||||
intgr_tol=self.thermal_process_tolerance.integration,
|
||||
intpl_tol=self.thermal_process_tolerance.interpolation,
|
||||
negative_frequencies=False,
|
||||
)
|
||||
|
||||
###########################################################################
|
||||
# Utility #
|
||||
###########################################################################
|
||||
|
||||
@property
|
||||
def hops_config(self):
|
||||
"""
|
||||
The hops :any:`hops.core.hierarchy_params.HIParams` parameter object
|
||||
for this system.
|
||||
"""
|
||||
|
||||
g, w = self.bcf_coefficients(self.bcf_terms)
|
||||
|
||||
system = params.SysP(
|
||||
H_sys=self.system.full(),
|
||||
L=[self.L.full()],
|
||||
g=[g],
|
||||
w=[w],
|
||||
bcf_scale=[self.bcf_scale],
|
||||
T=[self.T],
|
||||
description=self.description,
|
||||
psi0=self.ψ_0.full().flatten(),
|
||||
)
|
||||
|
||||
trunc_scheme = TruncationScheme_Power_multi.from_g_w(
|
||||
g=system.g,
|
||||
w=system.w,
|
||||
p=[1, 1],
|
||||
q=[0.5, 0.5],
|
||||
kfac=[float(self.k_fac)],
|
||||
)
|
||||
|
||||
if self.truncation_scheme == "bath_memory":
|
||||
trunc_scheme = BathMemory.from_system(
|
||||
system,
|
||||
nonlinear=True,
|
||||
influence_tolerance=float(self.influence_tolerance),
|
||||
)
|
||||
|
||||
if self.truncation_scheme == "simplex":
|
||||
trunc_scheme = TruncationScheme_Simplex(self.k_max)
|
||||
|
||||
hierarchy = params.HiP(
|
||||
seed=0,
|
||||
nonlinear=True,
|
||||
terminator=False,
|
||||
result_type=params.ResultType.ZEROTH_AND_FIRST_ORDER,
|
||||
accum_only=False,
|
||||
rand_skip=None,
|
||||
truncation_scheme=trunc_scheme,
|
||||
save_therm_rng_seed=True,
|
||||
auto_normalize=True,
|
||||
)
|
||||
|
||||
default_solver_args = dict(rtol=1e-8, atol=1e-8)
|
||||
default_solver_args.update(self.solver_args)
|
||||
|
||||
integration = params.IntP(
|
||||
t_max=float(self.t_max),
|
||||
t_steps=int(float(self.t_max) / float(self.resolution)) + 1,
|
||||
**default_solver_args,
|
||||
)
|
||||
|
||||
return params.HIParams(
|
||||
SysP=system,
|
||||
IntP=integration,
|
||||
HiP=hierarchy,
|
||||
Eta=[self.driving_process],
|
||||
EtaTherm=[self.thermal_process],
|
||||
)
|
38
test_one_qubit_model.py
Normal file
38
test_one_qubit_model.py
Normal file
|
@ -0,0 +1,38 @@
|
|||
import pytest
|
||||
import random
|
||||
from one_qubit_model import *
|
||||
from qutip import *
|
||||
from utility import assert_serializable
|
||||
import scipy.integrate
|
||||
|
||||
|
||||
def test_sd_bcf_norm():
|
||||
random.seed(0)
|
||||
|
||||
for _ in range(4):
|
||||
model = QubitModel(
|
||||
ω_c=random.uniform(0.5, 4),
|
||||
s=random.choice([1.0, 0.1, 0.5, 0.3]),
|
||||
T=random.uniform(0.1, 4),
|
||||
δ=1,
|
||||
)
|
||||
assert_serializable(model)
|
||||
|
||||
bcf = model.bcf
|
||||
assert np.abs(
|
||||
scipy.integrate.quad(lambda t: bcf(t).imag, 0, np.inf)[0] * model.bcf_norm
|
||||
) == pytest.approx(1)
|
||||
assert np.sum(model.bcf_coefficients()[0]) == pytest.approx(bcf(0), 1e-2)
|
||||
|
||||
tsd = model.thermal_spectral_density
|
||||
assert tsd is not None
|
||||
assert pytest.approx(tsd(1)) == model.spectral_density(1) * 1 / np.expm1(
|
||||
1 / float(model.T)
|
||||
)
|
||||
|
||||
tcorr = model.thermal_correlations
|
||||
assert tcorr is not None
|
||||
|
||||
# tests if the normalization of tcorr is correct by
|
||||
# calculating the fourier transform
|
||||
model.thermal_process
|
Loading…
Add table
Reference in a new issue