two_qubit_model/hiro_models/otto_cycle.py

439 lines
13 KiB
Python
Raw Normal View History

2022-11-26 02:34:49 +01:00
r"""HOPS Configurations for a simple qubit otto cycle."""
2022-11-29 14:15:23 -05:00
import math
2022-11-26 02:34:49 +01:00
from dataclasses import dataclass, field
2022-11-28 19:29:27 +01:00
from typing import SupportsFloat, Union
2022-11-26 02:34:49 +01:00
import numpy as np
import qutip as qt
2022-11-28 17:46:16 -05:00
from beartype import beartype, BeartypeConf
2022-11-28 19:28:32 +01:00
from scipy.optimize import minimize_scalar
from hops.util.dynamic_matrix import (
DynamicMatrix,
ConstantMatrix,
SmoothStep,
Periodic,
MatrixType,
)
2022-11-26 02:34:49 +01:00
from .one_qubit_model import QubitModelMutliBath
from .utility import linspace_with_strobe, strobe_times
2022-11-28 19:28:32 +01:00
from numpy.typing import ArrayLike, NDArray
from typing import Optional
from hops.core.hierarchy_data import HIData
2022-11-28 19:28:32 +01:00
2022-11-28 15:31:58 -05:00
Timings = tuple[float, float, float, float]
2022-11-28 19:28:32 +01:00
Orders = tuple[int, int]
class SmoothlyInterpolatdPeriodicMatrix(DynamicMatrix):
"""A periodic dynamic matrix that smoothly interpolates between
two matrices using :any:`SmoothStep`.
:param matrices: The two matrices ``M1`` and ``M2`` to interpolate
between.
:param timings: A tuple that contains the times (relative to the
period) when the transition from ``M1`` to ``M2`` begins, when
it ends and when the reverse transition begins and when it ends.
:param period: The period of the modulation.
:param orders: The orders of the smoothstep functions that are
being used. See also :any:`SmoothStep`.
:param amplitudes: The amplitudes of the modulation.
:param deriv: The order of derivative of the matrix.
"""
def __init__(
self,
matrices: tuple[Union[ArrayLike, list[list]], Union[ArrayLike, list[list]]],
timings: Timings,
period: float,
orders: tuple = (2, 2),
amplitudes: tuple[float, float] = (1, 1),
deriv: int = 0,
):
self._matrices = matrices
self._timings = timings
self._period = period
self._orders = orders
self._amplitudes = amplitudes
self._deriv = deriv
M_1, M_2 = matrices
s_1, s_2 = orders
a_1, a_2 = amplitudes
one_cycle: DynamicMatrix = a_1 * (
(ConstantMatrix(M_1) if deriv == 0 else ConstantMatrix(np.zeros_like(M_1)))
)
if a_1 != 0:
one_cycle += a_1 * (
SmoothStep(
M_1, timings[2] * period, timings[3] * period, s_2, deriv=deriv
)
- SmoothStep(
M_1, timings[0] * period, timings[1] * period, s_1, deriv=deriv
)
)
if a_2 != 0:
one_cycle += a_2 * (
SmoothStep(
M_2, timings[0] * period, timings[1] * period, s_1, deriv=deriv
)
- SmoothStep(
M_2, timings[2] * period, timings[3] * period, s_2, deriv=deriv
)
)
self._m = Periodic(one_cycle, period)
def call(self, t: NDArray[np.float64]) -> MatrixType:
return self._m.call(t)
def derivative(self):
return self.__class__(
matrices=self._matrices,
timings=self._timings,
period=self._period,
orders=self._orders,
amplitudes=self._amplitudes,
deriv=self._deriv + 1,
)
def __getstate__(self):
return dict(
matrices=self._matrices,
timings=self._timings,
period=self._period,
orders=self._orders,
2022-11-28 17:25:58 -05:00
amplitudes=self._amplitudes,
2022-11-28 19:28:32 +01:00
deriv=self._deriv,
)
2022-11-26 02:34:49 +01:00
2022-11-28 17:25:58 -05:00
@beartype(conf=BeartypeConf(is_pep484_tower=True))
2022-11-26 02:34:49 +01:00
@dataclass(eq=False)
2022-11-26 17:10:22 +01:00
class OttoEngine(QubitModelMutliBath):
2022-11-26 02:34:49 +01:00
r"""
A class to dynamically calculate all the otto motor model
parameters and generate the HOPS configuration. Uses
:any:`one_qubit_model.QubitModelMultiBath` internally.
All attributes can be changed after initialization.
2022-11-29 11:40:23 -05:00
The bath correlation functions are normalized, so that
their corresponding thermal SDs are of the same magnitude
at the resonance frequencies.
2022-11-26 02:34:49 +01:00
"""
2022-11-26 17:10:22 +01:00
__version__: int = 1
2022-11-26 02:34:49 +01:00
H_0: np.ndarray = field(
2022-11-26 17:10:22 +01:00
default_factory=lambda: 1 / 2 * (qt.sigmaz().full() + np.eye(2)) # type: ignore
2022-11-26 02:34:49 +01:00
)
"""
The :math:`H_0` system hamiltonian with shape ``(2, 2)``.
It will get shifted and normalized so that its smallest eigenvalue
is zero and its largest one is one.
"""
H_1: np.ndarray = field(
2022-11-26 17:10:22 +01:00
default_factory=lambda: 1 / 2 * (qt.sigmaz().full() + np.eye(2)) # type: ignore
2022-11-26 02:34:49 +01:00
)
"""
The :math:`H_1` shape ``(2, 2)``.
It will get shifted and normalized so that its smallest eigenvalue
is zero and its largest one is one.
"""
2022-11-28 19:28:32 +01:00
L: tuple[np.ndarray, np.ndarray] = field(
2022-11-28 17:26:03 -05:00
default_factory=lambda: tuple([(1 / 2 * (qt.sigmax().full())), (1 / 2 * (qt.sigmax().full()))]) # type: ignore
2022-11-28 19:28:32 +01:00
)
"""The bare coupling operators to the two baths."""
2022-11-29 14:15:23 -05:00
ω_s_extra: list[float] = field(default_factory=lambda: [0] * 2)
2022-11-28 19:28:32 +01:00
"""
2022-11-29 14:15:23 -05:00
The shift frequencies :math:`ω_s` applied on top of the automatic shift.
2022-11-28 19:28:32 +01:00
"""
2022-11-26 02:34:49 +01:00
###########################################################################
# Cycle Settings #
###########################################################################
Θ: float = 1
"""The period of the modulation."""
Δ: float = 1
"""The expansion ratio of the modulation."""
2022-12-01 12:27:39 -05:00
timings_H: Timings = field(default_factory=lambda: (0, 0.1, 0.5, 0.6))
2022-11-28 19:28:32 +01:00
"""The timings for the ``H`` modulation. See :any:`SmoothlyInterpolatdPeriodicMatrix`."""
2022-11-26 02:34:49 +01:00
2022-11-28 19:28:32 +01:00
orders_H: Orders = field(default_factory=lambda: (2, 2))
"""The smoothness of the modulation of ``H``."""
2022-11-26 02:34:49 +01:00
2022-11-28 19:28:32 +01:00
timings_L: tuple[Timings, Timings] = field(
2022-12-01 12:27:39 -05:00
default_factory=lambda: ((0.6, 0.7, 0.9, 1), (0.1, 0.2, 0.4, 0.5))
2022-11-28 19:28:32 +01:00
)
"""The timings for the ``L`` modulation. See :any:`SmoothlyInterpolatdPeriodicMatrix`."""
2022-11-26 02:34:49 +01:00
2022-11-28 19:28:32 +01:00
orders_L: tuple[Orders, Orders] = field(default_factory=lambda: ((2, 2), (2, 2)))
"""The smoothness of the modulation of ``L``."""
2022-11-26 02:34:49 +01:00
2022-11-28 15:31:58 -05:00
num_cycles: int = 1
"""How many cycles to simulate."""
2022-12-01 12:27:39 -05:00
dt: float = 0.001
2022-11-28 15:31:58 -05:00
"""The time resolution relative to the period of modulation."""
2022-11-29 14:15:23 -05:00
@property
def τ_max(self) -> float:
"""The maximum simulation time."""
return self.num_cycles * self.Θ
@property
def t(self) -> NDArray[np.float64]:
"""The simulation time."""
return linspace_with_strobe(
0,
self.τ_max,
int(self.τ_max // (self.dt * self.Θ)) + 1,
self.Ω,
)
2022-11-28 19:28:32 +01:00
@property
def strobe(self):
"""
Returns a tuple with the times where a cycle is complete and
their corresponding indices.
"""
return strobe_times(self.t, self.Ω)
2022-11-29 14:15:23 -05:00
@t.setter
def t(self, _):
pass
@property
def ω_s(self) -> list[float]:
"""
The frequency shifts of the spectral density. Calculated so
that the effective thermal SD has maximum magnitude at the
resonance frequencies of the hamiltonian. :any:`ω_s_extra` is added to those values.
"""
2022-11-29 11:40:23 -05:00
2022-11-29 14:15:23 -05:00
return [
extra + gap - float(ω_c) * float(s)
for ω_c, s, gap, extra in zip(
self.ω_c, self.s, self.energy_gaps, self.ω_s_extra
2022-11-29 11:40:23 -05:00
)
2022-11-29 14:15:23 -05:00
]
# super_instance = QubitModelMutliBath(ω_c=self.ω_c, s=self.s, T=self.T)
2022-11-29 11:40:23 -05:00
2022-11-29 14:15:23 -05:00
# def objective(ω_s, ω_exp, i):
# super_instance.ω_s[i] = ω_s
# return -super_instance.full_thermal_spectral_density(i)(ω_exp)
# ω_s = [ω for ω in self.ω_s_extra]
# ω_exps = self.energy_gaps
# for i, shift in enumerate(self.ω_s_extra):
# res = minimize_scalar(
# objective,
# 1,
# method="bounded",
# bounds=(0.01, ω_exps[i]),
# options=dict(maxiter=100),
# args=(ω_exps[i], i),
# )
# if not res.success:
# raise RuntimeError("Cannot optimize SD shift.")
2022-11-28 19:28:32 +01:00
2022-11-29 14:15:23 -05:00
# ω_s[i] = shift + round(res.x, number_magnitude(ω_exps[i]) + 3)
2022-11-28 19:28:32 +01:00
2022-11-29 14:15:23 -05:00
# return ω_s
@ω_s.setter
def ω_s(self, _):
pass
2022-11-26 02:34:49 +01:00
2022-11-29 11:40:23 -05:00
@property
def energy_gaps(self) -> tuple[float, float]:
2022-12-01 12:27:39 -05:00
"""
The energy gaps of the working medium in compressed and
expanded state.
"""
2022-11-29 11:40:23 -05:00
return tuple(
sorted(
(
get_energy_gap(self.H(0)),
get_energy_gap(self.H(self.τ_expansion_finished)),
)
2022-11-28 15:31:58 -05:00
)
2022-11-29 11:40:23 -05:00
)
2022-11-28 15:31:58 -05:00
@property
def τ_expansion_finished(self):
2022-12-01 12:27:39 -05:00
"""Time when the working medium is fully expanded."""
2022-11-28 15:31:58 -05:00
return self.timings_H[1] * self.Θ
2022-12-01 12:27:39 -05:00
@property
def τ_compressed(self):
"""Time when the working medium is fully copressed."""
return 0
2022-11-29 11:40:23 -05:00
@property
def bcf_scales(self) -> list[float]:
gaps = self.energy_gaps
return [
float(δ) / float(self.full_thermal_spectral_density(i)(gap))
for (i, gap), δ in zip(enumerate(gaps), self.δ)
]
2022-11-26 02:34:49 +01:00
@property
def H(self) -> DynamicMatrix:
2022-11-28 15:31:58 -05:00
r"""
2022-11-26 02:34:49 +01:00
Returns the modulated system Hamiltonian.
The system hamiltonian will always be :math:`ω_{\max} * H_1 +
(ω_{\max} - ω_{\min}) * f(τ) * H_1` where ``H_0`` is a fixed
2022-11-28 19:28:32 +01:00
matrix and :math:`f(τ)` models the time dependence. The time
dependce is implemented via
:any:`SmoothlyInterpolatdPeriodicMatrix` and leads to a
modulation of the levelspacing between ``ε_min=1`` and
``ε_max`` so that ``ε_max/ε_min - 1 = Δ``.
2022-11-26 02:34:49 +01:00
2022-11-28 19:28:32 +01:00
The modulation is cyclical with period :any:`Θ`.
2022-11-26 02:34:49 +01:00
"""
2022-11-28 19:28:32 +01:00
return SmoothlyInterpolatdPeriodicMatrix(
2022-11-28 15:31:58 -05:00
(self.H_0, self.H_1),
2022-11-28 19:28:32 +01:00
self.timings_H,
self.Θ,
self.orders_H,
(1, self.Δ + 1),
2022-11-26 02:34:49 +01:00
)
2022-11-26 17:10:22 +01:00
# we black-hole the H setter in this model
@H.setter
def H(self, _):
pass
2022-11-28 19:28:32 +01:00
@property
def coupling_operators(self) -> list[DynamicMatrix]:
return [
SmoothlyInterpolatdPeriodicMatrix(
(np.zeros_like(L_i), L_i),
timings,
self.Θ,
orders,
(0, 1),
)
for L_i, timings, orders in zip(self.L, self.timings_L, self.orders_L)
]
2022-11-28 18:22:43 -05:00
@property
def Ω(self) -> float:
"""The modulation base angular frequency."""
return 2 * np.pi / self.Θ
2022-11-26 17:10:22 +01:00
# @property
# def qubit_model(self) -> QubitModelMutliBath:
# """Returns the underlying Qubit model."""
# return QubitModelMutliBath(
# δ=self.δ,
# ω_c=self.ω_c,
# ω_s=self.ω_s,
# t=self.t,
# ψ_0=self.ψ_0,
# description=f"The qubit model underlying the otto cycle with description: {self.description}.",
# truncation_scheme="simplex",
# k_max=self.k_max,
# bcf_terms=self.bcf_terms,
# driving_process_tolerances=self.driving_process_tolerances,
# thermal_process_tolerances=self.thermal_process_tolerances,
# T=self.T,
# L=self.L,
# H=self.H,
# therm_methods=self.therm_methods,
# )
2022-11-26 02:34:49 +01:00
def steady_index(
self, σ_factor=2, data: Optional[HIData] = None, **kwargs
) -> Optional[int]:
"""
Determine using the system energy (``data`` and ``kwargs`` are
being passed to :any:`system_energy`) when the periodic steady
state has been reached.
This is being done by comparing the change of the system
energy from cycle to cycle against the standard deviation of
this value multiplied by ``σ_factor``.
"""
_, indices = self.strobe
Δ_system = abs(
(
self.system_energy(data, **kwargs).slice(indices[1:])
- self.system_energy(data, **kwargs).slice(indices[:-1])
)
* (1 / get_energy_gap(self.H(0)))
)
steady_mask = Δ_system.value < Δ_system.σ * 2
idx = np.argmax(steady_mask) + 1
if steady_mask[idx:].all():
return int(idx)
return False
def steady_energy_change(self, σ_factor=2, data: Optional[HIData] = None, **kwargs):
"""
The steady energy change computed from ``data`` or online
data. The ``kwargs`` are being passed on to the analysis
methods.
"""
_, indices = self.strobe
steady_idx = self.steady_index(σ_factor, data, **kwargs)
if steady_idx is None:
raise RuntimeError("No steady state available.")
Δ_energies = self.total_energy().slice(indices[1:]) - self.total_energy().slice(
indices[:-1]
)
return Δ_energies.mean
def power(self, *args, **kwargs):
return self.steady_energy_change(*args, **kwargs) * (1 / self.Θ)
2022-11-26 02:34:49 +01:00
def normalize_hamiltonian(hamiltonian: np.ndarray) -> np.ndarray:
eigvals = np.linalg.eigvals(hamiltonian)
normalized = hamiltonian - eigvals.min() * np.eye(
hamiltonian.shape[0], dtype=hamiltonian.dtype
)
2022-11-28 19:28:32 +01:00
normalized /= (eigvals.max() - eigvals.min()).real
2022-11-26 02:34:49 +01:00
return normalized
2022-11-28 19:28:32 +01:00
def get_energy_gap(hamiltonian: np.ndarray) -> float:
eigvals = np.linalg.eigvals(hamiltonian)
return (eigvals.max() - eigvals.min()).real
2022-11-29 14:15:23 -05:00
def number_magnitude(number: float) -> int:
return int(math.log10(number))