mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
219 lines
7.4 KiB
Python
219 lines
7.4 KiB
Python
import gym
|
|
from typing import Dict, List, Optional
|
|
|
|
import ray
|
|
from ray.rllib.evaluation.episode import Episode
|
|
from ray.rllib.evaluation.postprocessing import (
|
|
compute_gae_for_sample_batch,
|
|
Postprocessing,
|
|
)
|
|
from ray.rllib.models.action_dist import ActionDistribution
|
|
from ray.rllib.models.modelv2 import ModelV2
|
|
from ray.rllib.models.torch.torch_action_dist import TorchDistributionWrapper
|
|
from ray.rllib.policy.policy import Policy
|
|
from ray.rllib.policy.policy_template import build_policy_class
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.policy.torch_policy import LearningRateSchedule, EntropyCoeffSchedule
|
|
from ray.rllib.utils.deprecation import Deprecated
|
|
from ray.rllib.utils.framework import try_import_torch
|
|
from ray.rllib.utils.torch_utils import apply_grad_clipping, sequence_mask
|
|
from ray.rllib.utils.typing import (
|
|
TrainerConfigDict,
|
|
TensorType,
|
|
PolicyID,
|
|
LocalOptimizer,
|
|
)
|
|
|
|
torch, nn = try_import_torch()
|
|
|
|
|
|
@Deprecated(
|
|
old="rllib.agents.a3c.a3c_torch_policy.add_advantages",
|
|
new="rllib.evaluation.postprocessing.compute_gae_for_sample_batch",
|
|
error=False,
|
|
)
|
|
def add_advantages(
|
|
policy: Policy,
|
|
sample_batch: SampleBatch,
|
|
other_agent_batches: Optional[Dict[PolicyID, SampleBatch]] = None,
|
|
episode: Optional[Episode] = None,
|
|
) -> SampleBatch:
|
|
|
|
return compute_gae_for_sample_batch(
|
|
policy, sample_batch, other_agent_batches, episode
|
|
)
|
|
|
|
|
|
def actor_critic_loss(
|
|
policy: Policy,
|
|
model: ModelV2,
|
|
dist_class: ActionDistribution,
|
|
train_batch: SampleBatch,
|
|
) -> TensorType:
|
|
logits, _ = model(train_batch)
|
|
values = model.value_function()
|
|
|
|
if policy.is_recurrent():
|
|
B = len(train_batch[SampleBatch.SEQ_LENS])
|
|
max_seq_len = logits.shape[0] // B
|
|
mask_orig = sequence_mask(train_batch[SampleBatch.SEQ_LENS], max_seq_len)
|
|
valid_mask = torch.reshape(mask_orig, [-1])
|
|
else:
|
|
valid_mask = torch.ones_like(values, dtype=torch.bool)
|
|
|
|
dist = dist_class(logits, model)
|
|
log_probs = dist.logp(train_batch[SampleBatch.ACTIONS]).reshape(-1)
|
|
pi_err = -torch.sum(
|
|
torch.masked_select(
|
|
log_probs * train_batch[Postprocessing.ADVANTAGES], valid_mask
|
|
)
|
|
)
|
|
|
|
# Compute a value function loss.
|
|
if policy.config["use_critic"]:
|
|
value_err = 0.5 * torch.sum(
|
|
torch.pow(
|
|
torch.masked_select(
|
|
values.reshape(-1) - train_batch[Postprocessing.VALUE_TARGETS],
|
|
valid_mask,
|
|
),
|
|
2.0,
|
|
)
|
|
)
|
|
# Ignore the value function.
|
|
else:
|
|
value_err = 0.0
|
|
|
|
entropy = torch.sum(torch.masked_select(dist.entropy(), valid_mask))
|
|
|
|
total_loss = (
|
|
pi_err
|
|
+ value_err * policy.config["vf_loss_coeff"]
|
|
- entropy * policy.entropy_coeff
|
|
)
|
|
|
|
# Store values for stats function in model (tower), such that for
|
|
# multi-GPU, we do not override them during the parallel loss phase.
|
|
model.tower_stats["entropy"] = entropy
|
|
model.tower_stats["pi_err"] = pi_err
|
|
model.tower_stats["value_err"] = value_err
|
|
|
|
return total_loss
|
|
|
|
|
|
def stats(policy: Policy, train_batch: SampleBatch) -> Dict[str, TensorType]:
|
|
|
|
return {
|
|
"cur_lr": policy.cur_lr,
|
|
"entropy_coeff": policy.entropy_coeff,
|
|
"policy_entropy": torch.mean(torch.stack(policy.get_tower_stats("entropy"))),
|
|
"policy_loss": torch.mean(torch.stack(policy.get_tower_stats("pi_err"))),
|
|
"vf_loss": torch.mean(torch.stack(policy.get_tower_stats("value_err"))),
|
|
}
|
|
|
|
|
|
def vf_preds_fetches(
|
|
policy: Policy,
|
|
input_dict: Dict[str, TensorType],
|
|
state_batches: List[TensorType],
|
|
model: ModelV2,
|
|
action_dist: TorchDistributionWrapper,
|
|
) -> Dict[str, TensorType]:
|
|
"""Defines extra fetches per action computation.
|
|
|
|
Args:
|
|
policy (Policy): The Policy to perform the extra action fetch on.
|
|
input_dict (Dict[str, TensorType]): The input dict used for the action
|
|
computing forward pass.
|
|
state_batches (List[TensorType]): List of state tensors (empty for
|
|
non-RNNs).
|
|
model (ModelV2): The Model object of the Policy.
|
|
action_dist (TorchDistributionWrapper): The instantiated distribution
|
|
object, resulting from the model's outputs and the given
|
|
distribution class.
|
|
|
|
Returns:
|
|
Dict[str, TensorType]: Dict with extra tf fetches to perform per
|
|
action computation.
|
|
"""
|
|
# Return value function outputs. VF estimates will hence be added to the
|
|
# SampleBatches produced by the sampler(s) to generate the train batches
|
|
# going into the loss function.
|
|
return {
|
|
SampleBatch.VF_PREDS: model.value_function(),
|
|
}
|
|
|
|
|
|
def torch_optimizer(policy: Policy, config: TrainerConfigDict) -> LocalOptimizer:
|
|
return torch.optim.Adam(policy.model.parameters(), lr=config["lr"])
|
|
|
|
|
|
class ValueNetworkMixin:
|
|
"""Assigns the `_value()` method to the PPOPolicy.
|
|
|
|
This way, Policy can call `_value()` to get the current VF estimate on a
|
|
single(!) observation (as done in `postprocess_trajectory_fn`).
|
|
Note: When doing this, an actual forward pass is being performed.
|
|
This is different from only calling `model.value_function()`, where
|
|
the result of the most recent forward pass is being used to return an
|
|
already calculated tensor.
|
|
"""
|
|
|
|
def __init__(self, obs_space, action_space, config):
|
|
# When doing GAE, we need the value function estimate on the
|
|
# observation.
|
|
if config["use_gae"]:
|
|
# Input dict is provided to us automatically via the Model's
|
|
# requirements. It's a single-timestep (last one in trajectory)
|
|
# input_dict.
|
|
|
|
def value(**input_dict):
|
|
input_dict = SampleBatch(input_dict)
|
|
input_dict = self._lazy_tensor_dict(input_dict)
|
|
model_out, _ = self.model(input_dict)
|
|
# [0] = remove the batch dim.
|
|
return self.model.value_function()[0].item()
|
|
|
|
# When not doing GAE, we do not require the value function's output.
|
|
else:
|
|
|
|
def value(*args, **kwargs):
|
|
return 0.0
|
|
|
|
self._value = value
|
|
|
|
|
|
def setup_mixins(
|
|
policy: Policy,
|
|
obs_space: gym.spaces.Space,
|
|
action_space: gym.spaces.Space,
|
|
config: TrainerConfigDict,
|
|
) -> None:
|
|
"""Call all mixin classes' constructors before PPOPolicy initialization.
|
|
|
|
Args:
|
|
policy (Policy): The Policy object.
|
|
obs_space (gym.spaces.Space): The Policy's observation space.
|
|
action_space (gym.spaces.Space): The Policy's action space.
|
|
config (TrainerConfigDict): The Policy's config.
|
|
"""
|
|
EntropyCoeffSchedule.__init__(
|
|
policy, config["entropy_coeff"], config["entropy_coeff_schedule"]
|
|
)
|
|
LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"])
|
|
ValueNetworkMixin.__init__(policy, obs_space, action_space, config)
|
|
|
|
|
|
A3CTorchPolicy = build_policy_class(
|
|
name="A3CTorchPolicy",
|
|
framework="torch",
|
|
get_default_config=lambda: ray.rllib.agents.a3c.a3c.DEFAULT_CONFIG,
|
|
loss_fn=actor_critic_loss,
|
|
stats_fn=stats,
|
|
postprocess_fn=compute_gae_for_sample_batch,
|
|
extra_action_out_fn=vf_preds_fetches,
|
|
extra_grad_process_fn=apply_grad_clipping,
|
|
optimizer_fn=torch_optimizer,
|
|
before_loss_init=setup_mixins,
|
|
mixins=[ValueNetworkMixin, LearningRateSchedule, EntropyCoeffSchedule],
|
|
)
|