ray/rllib/agents/a3c/a3c_torch_policy.py
Balaji Veeramani 7f1bacc7dc
[CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes.
2022-01-29 18:41:57 -08:00

219 lines
7.4 KiB
Python

import gym
from typing import Dict, List, Optional
import ray
from ray.rllib.evaluation.episode import Episode
from ray.rllib.evaluation.postprocessing import (
compute_gae_for_sample_batch,
Postprocessing,
)
from ray.rllib.models.action_dist import ActionDistribution
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.torch.torch_action_dist import TorchDistributionWrapper
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.policy_template import build_policy_class
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.torch_policy import LearningRateSchedule, EntropyCoeffSchedule
from ray.rllib.utils.deprecation import Deprecated
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.torch_utils import apply_grad_clipping, sequence_mask
from ray.rllib.utils.typing import (
TrainerConfigDict,
TensorType,
PolicyID,
LocalOptimizer,
)
torch, nn = try_import_torch()
@Deprecated(
old="rllib.agents.a3c.a3c_torch_policy.add_advantages",
new="rllib.evaluation.postprocessing.compute_gae_for_sample_batch",
error=False,
)
def add_advantages(
policy: Policy,
sample_batch: SampleBatch,
other_agent_batches: Optional[Dict[PolicyID, SampleBatch]] = None,
episode: Optional[Episode] = None,
) -> SampleBatch:
return compute_gae_for_sample_batch(
policy, sample_batch, other_agent_batches, episode
)
def actor_critic_loss(
policy: Policy,
model: ModelV2,
dist_class: ActionDistribution,
train_batch: SampleBatch,
) -> TensorType:
logits, _ = model(train_batch)
values = model.value_function()
if policy.is_recurrent():
B = len(train_batch[SampleBatch.SEQ_LENS])
max_seq_len = logits.shape[0] // B
mask_orig = sequence_mask(train_batch[SampleBatch.SEQ_LENS], max_seq_len)
valid_mask = torch.reshape(mask_orig, [-1])
else:
valid_mask = torch.ones_like(values, dtype=torch.bool)
dist = dist_class(logits, model)
log_probs = dist.logp(train_batch[SampleBatch.ACTIONS]).reshape(-1)
pi_err = -torch.sum(
torch.masked_select(
log_probs * train_batch[Postprocessing.ADVANTAGES], valid_mask
)
)
# Compute a value function loss.
if policy.config["use_critic"]:
value_err = 0.5 * torch.sum(
torch.pow(
torch.masked_select(
values.reshape(-1) - train_batch[Postprocessing.VALUE_TARGETS],
valid_mask,
),
2.0,
)
)
# Ignore the value function.
else:
value_err = 0.0
entropy = torch.sum(torch.masked_select(dist.entropy(), valid_mask))
total_loss = (
pi_err
+ value_err * policy.config["vf_loss_coeff"]
- entropy * policy.entropy_coeff
)
# Store values for stats function in model (tower), such that for
# multi-GPU, we do not override them during the parallel loss phase.
model.tower_stats["entropy"] = entropy
model.tower_stats["pi_err"] = pi_err
model.tower_stats["value_err"] = value_err
return total_loss
def stats(policy: Policy, train_batch: SampleBatch) -> Dict[str, TensorType]:
return {
"cur_lr": policy.cur_lr,
"entropy_coeff": policy.entropy_coeff,
"policy_entropy": torch.mean(torch.stack(policy.get_tower_stats("entropy"))),
"policy_loss": torch.mean(torch.stack(policy.get_tower_stats("pi_err"))),
"vf_loss": torch.mean(torch.stack(policy.get_tower_stats("value_err"))),
}
def vf_preds_fetches(
policy: Policy,
input_dict: Dict[str, TensorType],
state_batches: List[TensorType],
model: ModelV2,
action_dist: TorchDistributionWrapper,
) -> Dict[str, TensorType]:
"""Defines extra fetches per action computation.
Args:
policy (Policy): The Policy to perform the extra action fetch on.
input_dict (Dict[str, TensorType]): The input dict used for the action
computing forward pass.
state_batches (List[TensorType]): List of state tensors (empty for
non-RNNs).
model (ModelV2): The Model object of the Policy.
action_dist (TorchDistributionWrapper): The instantiated distribution
object, resulting from the model's outputs and the given
distribution class.
Returns:
Dict[str, TensorType]: Dict with extra tf fetches to perform per
action computation.
"""
# Return value function outputs. VF estimates will hence be added to the
# SampleBatches produced by the sampler(s) to generate the train batches
# going into the loss function.
return {
SampleBatch.VF_PREDS: model.value_function(),
}
def torch_optimizer(policy: Policy, config: TrainerConfigDict) -> LocalOptimizer:
return torch.optim.Adam(policy.model.parameters(), lr=config["lr"])
class ValueNetworkMixin:
"""Assigns the `_value()` method to the PPOPolicy.
This way, Policy can call `_value()` to get the current VF estimate on a
single(!) observation (as done in `postprocess_trajectory_fn`).
Note: When doing this, an actual forward pass is being performed.
This is different from only calling `model.value_function()`, where
the result of the most recent forward pass is being used to return an
already calculated tensor.
"""
def __init__(self, obs_space, action_space, config):
# When doing GAE, we need the value function estimate on the
# observation.
if config["use_gae"]:
# Input dict is provided to us automatically via the Model's
# requirements. It's a single-timestep (last one in trajectory)
# input_dict.
def value(**input_dict):
input_dict = SampleBatch(input_dict)
input_dict = self._lazy_tensor_dict(input_dict)
model_out, _ = self.model(input_dict)
# [0] = remove the batch dim.
return self.model.value_function()[0].item()
# When not doing GAE, we do not require the value function's output.
else:
def value(*args, **kwargs):
return 0.0
self._value = value
def setup_mixins(
policy: Policy,
obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
config: TrainerConfigDict,
) -> None:
"""Call all mixin classes' constructors before PPOPolicy initialization.
Args:
policy (Policy): The Policy object.
obs_space (gym.spaces.Space): The Policy's observation space.
action_space (gym.spaces.Space): The Policy's action space.
config (TrainerConfigDict): The Policy's config.
"""
EntropyCoeffSchedule.__init__(
policy, config["entropy_coeff"], config["entropy_coeff_schedule"]
)
LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"])
ValueNetworkMixin.__init__(policy, obs_space, action_space, config)
A3CTorchPolicy = build_policy_class(
name="A3CTorchPolicy",
framework="torch",
get_default_config=lambda: ray.rllib.agents.a3c.a3c.DEFAULT_CONFIG,
loss_fn=actor_critic_loss,
stats_fn=stats,
postprocess_fn=compute_gae_for_sample_batch,
extra_action_out_fn=vf_preds_fetches,
extra_grad_process_fn=apply_grad_clipping,
optimizer_fn=torch_optimizer,
before_loss_init=setup_mixins,
mixins=[ValueNetworkMixin, LearningRateSchedule, EntropyCoeffSchedule],
)