ray/release/long_running_tests/workloads/many_ppo.py
Balaji Veeramani 7f1bacc7dc
[CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes.
2022-01-29 18:41:57 -08:00

53 lines
1.4 KiB
Python

# This workload tests running many instances of PPO (many actors)
# This covers https://github.com/ray-project/ray/pull/12148
import ray
from ray.tune import run_experiments
from ray.tune.utils.release_test_util import ProgressCallback
from ray._private.test_utils import monitor_memory_usage
num_redis_shards = 5
redis_max_memory = 10 ** 8
object_store_memory = 10 ** 9
num_nodes = 3
message = (
"Make sure there is enough memory on this machine to run this "
"workload. We divide the system memory by 2 to provide a buffer."
)
assert (
num_nodes * object_store_memory + num_redis_shards * redis_max_memory
< ray._private.utils.get_system_memory() / 2
), message
# Simulate a cluster on one machine.
ray.init(address="auto")
monitor_actor = monitor_memory_usage()
# Run the workload.
run_experiments(
{
"ppo": {
"run": "PPO",
"env": "CartPole-v0",
"num_samples": 10000,
"config": {
"framework": "torch",
"num_workers": 7,
"num_gpus": 0,
"num_sgd_iter": 1,
},
"stop": {
"timesteps_total": 1,
},
}
},
callbacks=[ProgressCallback()],
)
ray.get(monitor_actor.stop_run.remote())
used_gb, usage = ray.get(monitor_actor.get_peak_memory_info.remote())
print(f"Peak memory usage: {round(used_gb, 2)}GB")
print(f"Peak memory usage per processes:\n {usage}")