mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
128 lines
4.3 KiB
Python
128 lines
4.3 KiB
Python
import argparse
|
|
import os
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.rllib.examples.env.look_and_push import LookAndPush, OneHot
|
|
from ray.rllib.examples.env.repeat_after_me_env import RepeatAfterMeEnv
|
|
from ray.rllib.examples.env.repeat_initial_obs_env import RepeatInitialObsEnv
|
|
from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
from ray.tune import registry
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--run",
|
|
type=str,
|
|
default="PPO",
|
|
help="The RLlib-registered algorithm to use.")
|
|
parser.add_argument("--env", type=str, default="RepeatAfterMeEnv")
|
|
parser.add_argument("--num-cpus", type=int, default=3)
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.")
|
|
parser.add_argument(
|
|
"--as-test",
|
|
action="store_true",
|
|
help="Whether this script should be run as a test: --stop-reward must "
|
|
"be achieved within --stop-timesteps AND --stop-iters.")
|
|
parser.add_argument(
|
|
"--stop-iters",
|
|
type=int,
|
|
default=200,
|
|
help="Number of iterations to train.")
|
|
parser.add_argument(
|
|
"--stop-timesteps",
|
|
type=int,
|
|
default=500000,
|
|
help="Number of timesteps to train.")
|
|
parser.add_argument(
|
|
"--stop-reward",
|
|
type=float,
|
|
default=80.0,
|
|
help="Reward at which we stop training.")
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
|
|
ray.init(num_cpus=args.num_cpus or None)
|
|
|
|
registry.register_env("RepeatAfterMeEnv", lambda c: RepeatAfterMeEnv(c))
|
|
registry.register_env("RepeatInitialObsEnv",
|
|
lambda _: RepeatInitialObsEnv())
|
|
registry.register_env("LookAndPush", lambda _: OneHot(LookAndPush()))
|
|
registry.register_env("StatelessCartPole", lambda _: StatelessCartPole())
|
|
|
|
config = {
|
|
"env": args.env,
|
|
# This env_config is only used for the RepeatAfterMeEnv env.
|
|
"env_config": {
|
|
"repeat_delay": 2,
|
|
},
|
|
"gamma": 0.99,
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", 0)),
|
|
"num_envs_per_worker": 20,
|
|
"entropy_coeff": 0.001,
|
|
"num_sgd_iter": 10,
|
|
"vf_loss_coeff": 1e-5,
|
|
"model": {
|
|
# Attention net wrapping (for tf) can already use the native keras
|
|
# model versions. For torch, this will have no effect.
|
|
"_use_default_native_models": True,
|
|
"use_attention": True,
|
|
"max_seq_len": 10,
|
|
"attention_num_transformer_units": 1,
|
|
"attention_dim": 32,
|
|
"attention_memory_inference": 10,
|
|
"attention_memory_training": 10,
|
|
"attention_num_heads": 1,
|
|
"attention_head_dim": 32,
|
|
"attention_position_wise_mlp_dim": 32,
|
|
},
|
|
"framework": args.framework,
|
|
}
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"episode_reward_mean": args.stop_reward,
|
|
}
|
|
|
|
# To run the Trainer without tune.run, using the attention net and
|
|
# manual state-in handling, do the following:
|
|
|
|
# Example (use `config` from the above code):
|
|
# >> import numpy as np
|
|
# >> from ray.rllib.agents.ppo import PPOTrainer
|
|
# >>
|
|
# >> trainer = PPOTrainer(config)
|
|
# >> num_transformers = config["model"]["attention_num_transformer_units"]
|
|
# >> env = RepeatAfterMeEnv({})
|
|
# >> obs = env.reset()
|
|
# >> init_state = state = [
|
|
# .. np.zeros([100, 32], np.float32) for _ in range(num_transformers)
|
|
# .. ]
|
|
# >> while True:
|
|
# >> a, state_out, _ = trainer.compute_action(obs, state)
|
|
# >> obs, reward, done, _ = env.step(a)
|
|
# >> if done:
|
|
# >> obs = env.reset()
|
|
# >> state = init_state
|
|
# >> else:
|
|
# >> state = [
|
|
# .. np.concatenate([state[i], [state_out[i]]], axis=0)[1:]
|
|
# .. for i in range(num_transformers)
|
|
# .. ]
|
|
|
|
# We use tune here, which handles env and trainer creation for us.
|
|
results = tune.run(args.run, config=config, stop=stop, verbose=2)
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
ray.shutdown()
|