import argparse import os import ray from ray import tune from ray.rllib.examples.env.look_and_push import LookAndPush, OneHot from ray.rllib.examples.env.repeat_after_me_env import RepeatAfterMeEnv from ray.rllib.examples.env.repeat_initial_obs_env import RepeatInitialObsEnv from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.test_utils import check_learning_achieved from ray.tune import registry tf1, tf, tfv = try_import_tf() parser = argparse.ArgumentParser() parser.add_argument( "--run", type=str, default="PPO", help="The RLlib-registered algorithm to use.") parser.add_argument("--env", type=str, default="RepeatAfterMeEnv") parser.add_argument("--num-cpus", type=int, default=3) parser.add_argument( "--framework", choices=["tf", "tf2", "tfe", "torch"], default="tf", help="The DL framework specifier.") parser.add_argument( "--as-test", action="store_true", help="Whether this script should be run as a test: --stop-reward must " "be achieved within --stop-timesteps AND --stop-iters.") parser.add_argument( "--stop-iters", type=int, default=200, help="Number of iterations to train.") parser.add_argument( "--stop-timesteps", type=int, default=500000, help="Number of timesteps to train.") parser.add_argument( "--stop-reward", type=float, default=80.0, help="Reward at which we stop training.") if __name__ == "__main__": args = parser.parse_args() ray.init(num_cpus=args.num_cpus or None) registry.register_env("RepeatAfterMeEnv", lambda c: RepeatAfterMeEnv(c)) registry.register_env("RepeatInitialObsEnv", lambda _: RepeatInitialObsEnv()) registry.register_env("LookAndPush", lambda _: OneHot(LookAndPush())) registry.register_env("StatelessCartPole", lambda _: StatelessCartPole()) config = { "env": args.env, # This env_config is only used for the RepeatAfterMeEnv env. "env_config": { "repeat_delay": 2, }, "gamma": 0.99, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", 0)), "num_envs_per_worker": 20, "entropy_coeff": 0.001, "num_sgd_iter": 10, "vf_loss_coeff": 1e-5, "model": { # Attention net wrapping (for tf) can already use the native keras # model versions. For torch, this will have no effect. "_use_default_native_models": True, "use_attention": True, "max_seq_len": 10, "attention_num_transformer_units": 1, "attention_dim": 32, "attention_memory_inference": 10, "attention_memory_training": 10, "attention_num_heads": 1, "attention_head_dim": 32, "attention_position_wise_mlp_dim": 32, }, "framework": args.framework, } stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } # To run the Trainer without tune.run, using the attention net and # manual state-in handling, do the following: # Example (use `config` from the above code): # >> import numpy as np # >> from ray.rllib.agents.ppo import PPOTrainer # >> # >> trainer = PPOTrainer(config) # >> num_transformers = config["model"]["attention_num_transformer_units"] # >> env = RepeatAfterMeEnv({}) # >> obs = env.reset() # >> init_state = state = [ # .. np.zeros([100, 32], np.float32) for _ in range(num_transformers) # .. ] # >> while True: # >> a, state_out, _ = trainer.compute_action(obs, state) # >> obs, reward, done, _ = env.step(a) # >> if done: # >> obs = env.reset() # >> state = init_state # >> else: # >> state = [ # .. np.concatenate([state[i], [state_out[i]]], axis=0)[1:] # .. for i in range(num_transformers) # .. ] # We use tune here, which handles env and trainer creation for us. results = tune.run(args.run, config=config, stop=stop, verbose=2) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()