ray/release/long_running_tests/workloads/impala.py
Jun Gong 99b7be5e22
[rllib] Fix impala long running test (#22619)
fix impala long running test.
Bandits is the first agent that requires torch import at registration time.
2022-02-24 09:03:55 -08:00

62 lines
1.6 KiB
Python

# This workload tests running IMPALA with remote envs
import ray
from ray.tune import run_experiments
import os
from ray.tune.utils.release_test_util import ProgressCallback
num_redis_shards = 5
redis_max_memory = 10 ** 8
object_store_memory = 10 ** 8
num_nodes = 1
message = (
"Make sure there is enough memory on this machine to run this "
"workload. We divide the system memory by 2 to provide a buffer."
)
assert (
num_nodes * object_store_memory + num_redis_shards * redis_max_memory
< ray._private.utils.get_system_memory() / 2
), message
# Simulate a cluster on one machine.
# cluster = Cluster()
# for i in range(num_nodes):
# cluster.add_node(
# redis_port=6379 if i == 0 else None,
# num_redis_shards=num_redis_shards if i == 0 else None,
# num_cpus=10,
# num_gpus=0,
# resources={str(i): 2},
# object_store_memory=object_store_memory,
# redis_max_memory=redis_max_memory,
# dashboard_host="0.0.0.0")
# ray.init(address=cluster.address)
if "RAY_ADDRESS" in os.environ:
del os.environ["RAY_ADDRESS"]
ray.init(num_cpus=10)
# Run the workload.
# Whitespace diff to test things.
run_experiments(
{
"impala": {
"run": "IMPALA",
"env": "CartPole-v1",
"config": {
"num_workers": 8,
"num_gpus": 0,
"num_envs_per_worker": 5,
"remote_worker_envs": True,
"remote_env_batch_wait_ms": 99999999,
"rollout_fragment_length": 50,
"train_batch_size": 100,
},
},
},
callbacks=[ProgressCallback()],
)