# This workload tests running IMPALA with remote envs import ray from ray.tune import run_experiments import os from ray.tune.utils.release_test_util import ProgressCallback num_redis_shards = 5 redis_max_memory = 10 ** 8 object_store_memory = 10 ** 8 num_nodes = 1 message = ( "Make sure there is enough memory on this machine to run this " "workload. We divide the system memory by 2 to provide a buffer." ) assert ( num_nodes * object_store_memory + num_redis_shards * redis_max_memory < ray._private.utils.get_system_memory() / 2 ), message # Simulate a cluster on one machine. # cluster = Cluster() # for i in range(num_nodes): # cluster.add_node( # redis_port=6379 if i == 0 else None, # num_redis_shards=num_redis_shards if i == 0 else None, # num_cpus=10, # num_gpus=0, # resources={str(i): 2}, # object_store_memory=object_store_memory, # redis_max_memory=redis_max_memory, # dashboard_host="0.0.0.0") # ray.init(address=cluster.address) if "RAY_ADDRESS" in os.environ: del os.environ["RAY_ADDRESS"] ray.init(num_cpus=10) # Run the workload. # Whitespace diff to test things. run_experiments( { "impala": { "run": "IMPALA", "env": "CartPole-v1", "config": { "num_workers": 8, "num_gpus": 0, "num_envs_per_worker": 5, "remote_worker_envs": True, "remote_env_batch_wait_ms": 99999999, "rollout_fragment_length": 50, "train_batch_size": 100, }, }, }, callbacks=[ProgressCallback()], )