mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
165 lines
5.9 KiB
Python
165 lines
5.9 KiB
Python
from collections import namedtuple
|
|
import logging
|
|
|
|
import numpy as np
|
|
|
|
from ray.rllib.policy.sample_batch import MultiAgentBatch, SampleBatch
|
|
from ray.rllib.policy import Policy
|
|
from ray.rllib.utils.annotations import DeveloperAPI
|
|
from ray.rllib.offline.io_context import IOContext
|
|
from ray.rllib.utils.annotations import Deprecated
|
|
from ray.rllib.utils.numpy import convert_to_numpy
|
|
from ray.rllib.utils.typing import TensorType, SampleBatchType
|
|
from typing import List
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
OffPolicyEstimate = namedtuple("OffPolicyEstimate", ["estimator_name", "metrics"])
|
|
|
|
|
|
@DeveloperAPI
|
|
class OffPolicyEstimator:
|
|
"""Interface for an off policy reward estimator."""
|
|
|
|
@DeveloperAPI
|
|
def __init__(self, policy: Policy, gamma: float):
|
|
"""Initializes an OffPolicyEstimator instance.
|
|
|
|
Args:
|
|
policy: Policy to evaluate.
|
|
gamma: Discount factor of the environment.
|
|
"""
|
|
self.policy = policy
|
|
self.gamma = gamma
|
|
self.new_estimates = []
|
|
|
|
@classmethod
|
|
def create_from_io_context(cls, ioctx: IOContext) -> "OffPolicyEstimator":
|
|
"""Creates an off-policy estimator from an IOContext object.
|
|
|
|
Extracts Policy and gamma (discount factor) information from the
|
|
IOContext.
|
|
|
|
Args:
|
|
ioctx: The IOContext object to create the OffPolicyEstimator
|
|
from.
|
|
|
|
Returns:
|
|
The OffPolicyEstimator object created from the IOContext object.
|
|
"""
|
|
gamma = ioctx.worker.policy_config["gamma"]
|
|
# Grab a reference to the current model
|
|
keys = list(ioctx.worker.policy_map.keys())
|
|
if len(keys) > 1:
|
|
raise NotImplementedError(
|
|
"Off-policy estimation is not implemented for multi-agent. "
|
|
"You can set `input_evaluation: []` to resolve this."
|
|
)
|
|
policy = ioctx.worker.get_policy(keys[0])
|
|
return cls(policy, gamma)
|
|
|
|
@DeveloperAPI
|
|
def estimate(self, batch: SampleBatchType) -> OffPolicyEstimate:
|
|
"""Returns an off policy estimate for the given batch of experiences.
|
|
|
|
The batch will at most only contain data from one episode,
|
|
but it may also only be a fragment of an episode.
|
|
|
|
Args:
|
|
batch: The batch to calculate the off policy estimate (OPE) on.
|
|
|
|
Returns:
|
|
The off-policy estimates (OPE) calculated on the given batch.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@DeveloperAPI
|
|
def action_log_likelihood(self, batch: SampleBatchType) -> TensorType:
|
|
"""Returns log likelihoods for actions in given batch for policy.
|
|
|
|
Computes likelihoods by passing the observations through the current
|
|
policy's `compute_log_likelihoods()` method.
|
|
|
|
Args:
|
|
batch: The SampleBatch or MultiAgentBatch to calculate action
|
|
log likelihoods from. This batch/batches must contain OBS
|
|
and ACTIONS keys.
|
|
|
|
Returns:
|
|
The log likelihoods of the actions in the batch, given the
|
|
observations and the policy.
|
|
"""
|
|
num_state_inputs = 0
|
|
for k in batch.keys():
|
|
if k.startswith("state_in_"):
|
|
num_state_inputs += 1
|
|
state_keys = ["state_in_{}".format(i) for i in range(num_state_inputs)]
|
|
log_likelihoods: TensorType = self.policy.compute_log_likelihoods(
|
|
actions=batch[SampleBatch.ACTIONS],
|
|
obs_batch=batch[SampleBatch.OBS],
|
|
state_batches=[batch[k] for k in state_keys],
|
|
prev_action_batch=batch.get(SampleBatch.PREV_ACTIONS),
|
|
prev_reward_batch=batch.get(SampleBatch.PREV_REWARDS),
|
|
actions_normalized=True,
|
|
)
|
|
log_likelihoods = convert_to_numpy(log_likelihoods)
|
|
return np.exp(log_likelihoods)
|
|
|
|
@DeveloperAPI
|
|
def process(self, batch: SampleBatchType) -> None:
|
|
"""Computes off policy estimates (OPE) on batch and stores results.
|
|
|
|
Thus-far collected results can be retrieved then by calling
|
|
`self.get_metrics` (which flushes the internal results storage).
|
|
|
|
Args:
|
|
batch: The batch to process (call `self.estimate()` on) and
|
|
store results (OPEs) for.
|
|
"""
|
|
self.new_estimates.append(self.estimate(batch))
|
|
|
|
@DeveloperAPI
|
|
def check_can_estimate_for(self, batch: SampleBatchType) -> None:
|
|
"""Checks if we support off policy estimation (OPE) on given batch.
|
|
|
|
Args:
|
|
batch: The batch to check.
|
|
|
|
Raises:
|
|
ValueError: In case `action_prob` key is not in batch OR batch
|
|
is a MultiAgentBatch.
|
|
"""
|
|
|
|
if isinstance(batch, MultiAgentBatch):
|
|
raise ValueError(
|
|
"IS-estimation is not implemented for multi-agent batches. "
|
|
"You can set `input_evaluation: []` to resolve this."
|
|
)
|
|
|
|
if "action_prob" not in batch:
|
|
raise ValueError(
|
|
"Off-policy estimation is not possible unless the inputs "
|
|
"include action probabilities (i.e., the policy is stochastic "
|
|
"and emits the 'action_prob' key). For DQN this means using "
|
|
"`exploration_config: {type: 'SoftQ'}`. You can also set "
|
|
"`input_evaluation: []` to disable estimation."
|
|
)
|
|
|
|
@DeveloperAPI
|
|
def get_metrics(self) -> List[OffPolicyEstimate]:
|
|
"""Returns list of new episode metric estimates since the last call.
|
|
|
|
Returns:
|
|
List of OffPolicyEstimate objects.
|
|
"""
|
|
out = self.new_estimates
|
|
self.new_estimates = []
|
|
return out
|
|
|
|
@Deprecated(new="OffPolicyEstimator.create_from_io_context", error=False)
|
|
def create(self, *args, **kwargs):
|
|
return self.create_from_io_context(*args, **kwargs)
|
|
|
|
@Deprecated(new="OffPolicyEstimator.action_log_likelihood", error=False)
|
|
def action_prob(self, *args, **kwargs):
|
|
return self.action_log_likelihood(*args, **kwargs)
|