mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
175 lines
5.6 KiB
Python
175 lines
5.6 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Benchmark test for single deployment at 1k no-op replica scale with
|
|
autoscaling.
|
|
|
|
1) Start with a single head node.
|
|
2) Autoscale up to 1k no-op replicas over N nodes.
|
|
3) Launch wrk in each running node to simulate load balanced request
|
|
5) Run a 10-minute wrk trial on each node, aggregate results.
|
|
|
|
Report:
|
|
per_thread_latency_avg_ms
|
|
per_thread_latency_max_ms
|
|
per_thread_avg_tps
|
|
per_thread_max_tps
|
|
|
|
per_node_avg_tps
|
|
per_node_avg_transfer_per_sec_KB
|
|
|
|
cluster_total_thoughput
|
|
cluster_total_transfer_KB
|
|
cluster_max_P50_latency_ms
|
|
cluster_max_P75_latency_ms
|
|
cluster_max_P90_latency_ms
|
|
cluster_max_P99_latency_ms
|
|
"""
|
|
|
|
import click
|
|
import json
|
|
import math
|
|
import os
|
|
|
|
from ray import serve
|
|
from ray.serve.utils import logger
|
|
from serve_test_utils import (
|
|
aggregate_all_metrics,
|
|
run_wrk_on_all_nodes,
|
|
save_test_results,
|
|
)
|
|
from serve_test_cluster_utils import (
|
|
setup_local_single_node_cluster,
|
|
setup_anyscale_cluster,
|
|
warm_up_one_cluster,
|
|
NUM_CPU_PER_NODE,
|
|
NUM_CONNECTIONS,
|
|
)
|
|
from typing import Optional
|
|
|
|
# Experiment configs
|
|
DEFAULT_SMOKE_TEST_MIN_NUM_REPLICA = 1
|
|
DEFAULT_SMOKE_TEST_MAX_NUM_REPLICA = 4
|
|
DEFAULT_FULL_TEST_MIN_NUM_REPLICA = 1
|
|
DEFAULT_FULL_TEST_MAX_NUM_REPLICA = 1000
|
|
|
|
# Deployment configs
|
|
DEFAULT_MAX_BATCH_SIZE = 16
|
|
|
|
# Experiment configs - wrk specific
|
|
DEFAULT_SMOKE_TEST_TRIAL_LENGTH = "15s"
|
|
DEFAULT_FULL_TEST_TRIAL_LENGTH = "10m"
|
|
|
|
|
|
def deploy_replicas(min_replicas, max_replicas, max_batch_size):
|
|
@serve.deployment(
|
|
name="echo",
|
|
_autoscaling_config={
|
|
"metrics_interval_s": 0.1,
|
|
"min_replicas": min_replicas,
|
|
"max_replicas": max_replicas,
|
|
"look_back_period_s": 0.2,
|
|
"downscale_delay_s": 0.2,
|
|
"upscale_delay_s": 0.2,
|
|
},
|
|
version="v1",
|
|
)
|
|
class Echo:
|
|
@serve.batch(max_batch_size=max_batch_size)
|
|
async def handle_batch(self, requests):
|
|
return ["hi" for _ in range(len(requests))]
|
|
|
|
async def __call__(self, request):
|
|
return await self.handle_batch(request)
|
|
|
|
Echo.deploy()
|
|
|
|
|
|
def save_results(final_result, default_name):
|
|
test_output_json = os.environ.get(
|
|
"TEST_OUTPUT_JSON", "/tmp/single_deployment_1k_noop_replica.json"
|
|
)
|
|
with open(test_output_json, "wt") as f:
|
|
json.dump(final_result, f)
|
|
|
|
|
|
@click.command()
|
|
@click.option("--min-replicas", "-min", type=int)
|
|
@click.option("--max-replicas", "-max", type=int)
|
|
@click.option("--trial-length", "-tl", type=str)
|
|
@click.option("--max-batch-size", type=int, default=DEFAULT_MAX_BATCH_SIZE)
|
|
def main(
|
|
min_replicas: Optional[int],
|
|
max_replicas: Optional[int],
|
|
trial_length: Optional[str],
|
|
max_batch_size: Optional[int],
|
|
):
|
|
# Give default cluster parameter values based on smoke_test config
|
|
# if user provided values explicitly, use them instead.
|
|
# IS_SMOKE_TEST is set by args of releaser's e2e.py
|
|
smoke_test = os.environ.get("IS_SMOKE_TEST", "1")
|
|
if smoke_test == "1":
|
|
min_replicas = min_replicas or DEFAULT_SMOKE_TEST_MIN_NUM_REPLICA
|
|
max_replicas = max_replicas or DEFAULT_SMOKE_TEST_MAX_NUM_REPLICA
|
|
trial_length = trial_length or DEFAULT_SMOKE_TEST_TRIAL_LENGTH
|
|
logger.info(
|
|
f"Running local / smoke test with min {min_replicas} and max "
|
|
f"{max_replicas} replicas ..\n"
|
|
)
|
|
|
|
# Choose cluster setup based on user config. Local test uses Cluster()
|
|
# to mock actors that requires # of nodes to be specified, but ray
|
|
# client doesn't need to
|
|
num_nodes = int(math.ceil(max_replicas / NUM_CPU_PER_NODE))
|
|
logger.info(f"Setting up local ray cluster with {num_nodes} nodes ..\n")
|
|
serve_client = setup_local_single_node_cluster(num_nodes)[0]
|
|
else:
|
|
min_replicas = min_replicas or DEFAULT_FULL_TEST_MIN_NUM_REPLICA
|
|
max_replicas = max_replicas or DEFAULT_FULL_TEST_MAX_NUM_REPLICA
|
|
trial_length = trial_length or DEFAULT_FULL_TEST_TRIAL_LENGTH
|
|
logger.info(
|
|
f"Running full test with min {min_replicas} and max "
|
|
f"{max_replicas} replicas ..\n"
|
|
)
|
|
logger.info("Setting up anyscale ray cluster .. \n")
|
|
serve_client = setup_anyscale_cluster()
|
|
|
|
http_host = str(serve_client._http_config.host)
|
|
http_port = str(serve_client._http_config.port)
|
|
logger.info(f"Ray serve http_host: {http_host}, http_port: {http_port}")
|
|
|
|
logger.info(
|
|
f"Deploying with min {min_replicas} and max {max_replicas} "
|
|
f"target replicas ....\n"
|
|
)
|
|
deploy_replicas(min_replicas, max_replicas, max_batch_size)
|
|
|
|
logger.info("Warming up cluster ....\n")
|
|
warm_up_one_cluster.remote(10, http_host, http_port, "echo")
|
|
|
|
logger.info(f"Starting wrk trial on all nodes for {trial_length} ....\n")
|
|
# For detailed discussion, see https://github.com/wg/wrk/issues/205
|
|
# TODO:(jiaodong) What's the best number to use here ?
|
|
all_endpoints = list(serve.list_deployments().keys())
|
|
all_metrics, all_wrk_stdout = run_wrk_on_all_nodes(
|
|
trial_length, NUM_CONNECTIONS, http_host, http_port, all_endpoints=all_endpoints
|
|
)
|
|
|
|
aggregated_metrics = aggregate_all_metrics(all_metrics)
|
|
logger.info("Wrk stdout on each node: ")
|
|
for wrk_stdout in all_wrk_stdout:
|
|
logger.info(wrk_stdout)
|
|
logger.info("Final aggregated metrics: ")
|
|
for key, val in aggregated_metrics.items():
|
|
logger.info(f"{key}: {val}")
|
|
save_test_results(
|
|
aggregated_metrics,
|
|
default_output_file="/tmp/autoscaling_single_deployment.json",
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
import pytest
|
|
import sys
|
|
|
|
sys.exit(pytest.main(["-v", "-s", __file__]))
|