mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
224 lines
8.1 KiB
Python
224 lines
8.1 KiB
Python
import numpy as np
|
|
from scipy.stats import norm
|
|
import unittest
|
|
|
|
import ray
|
|
import ray.rllib.agents.dqn as dqn
|
|
import ray.rllib.agents.pg as pg
|
|
import ray.rllib.agents.ppo as ppo
|
|
import ray.rllib.agents.sac as sac
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.test_utils import check, framework_iterator
|
|
from ray.rllib.utils.numpy import one_hot, fc, MIN_LOG_NN_OUTPUT, MAX_LOG_NN_OUTPUT
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
|
|
def do_test_log_likelihood(
|
|
run,
|
|
config,
|
|
prev_a=None,
|
|
continuous=False,
|
|
layer_key=("fc", (0, 4), ("_hidden_layers.0.", "_logits.")),
|
|
logp_func=None,
|
|
):
|
|
config = config.copy()
|
|
# Run locally.
|
|
config["num_workers"] = 0
|
|
# Env setup.
|
|
if continuous:
|
|
env = "Pendulum-v1"
|
|
obs_batch = preprocessed_obs_batch = np.array([[0.0, 0.1, -0.1]])
|
|
else:
|
|
env = "FrozenLake-v1"
|
|
config["env_config"] = {"is_slippery": False, "map_name": "4x4"}
|
|
obs_batch = np.array([0])
|
|
# PG does not preprocess anymore by default.
|
|
preprocessed_obs_batch = (
|
|
one_hot(obs_batch, depth=16) if run is not pg.PGTrainer else obs_batch
|
|
)
|
|
|
|
prev_r = None if prev_a is None else np.array(0.0)
|
|
|
|
# Test against all frameworks.
|
|
for fw in framework_iterator(config):
|
|
trainer = run(config=config, env=env)
|
|
|
|
policy = trainer.get_policy()
|
|
vars = policy.get_weights()
|
|
# Sample n actions, then roughly check their logp against their
|
|
# counts.
|
|
num_actions = 1000 if not continuous else 50
|
|
actions = []
|
|
for _ in range(num_actions):
|
|
# Single action from single obs.
|
|
actions.append(
|
|
trainer.compute_single_action(
|
|
obs_batch[0],
|
|
prev_action=prev_a,
|
|
prev_reward=prev_r,
|
|
explore=True,
|
|
# Do not unsquash actions
|
|
# (remain in normalized [-1.0; 1.0] space).
|
|
unsquash_action=False,
|
|
)
|
|
)
|
|
|
|
# Test all taken actions for their log-likelihoods vs expected values.
|
|
if continuous:
|
|
for idx in range(num_actions):
|
|
a = actions[idx]
|
|
if fw != "torch":
|
|
if isinstance(vars, list):
|
|
expected_mean_logstd = fc(
|
|
fc(obs_batch, vars[layer_key[1][0]]), vars[layer_key[1][1]]
|
|
)
|
|
else:
|
|
expected_mean_logstd = fc(
|
|
fc(
|
|
obs_batch,
|
|
vars["default_policy/{}_1/kernel".format(layer_key[0])],
|
|
),
|
|
vars["default_policy/{}_out/kernel".format(layer_key[0])],
|
|
)
|
|
else:
|
|
expected_mean_logstd = fc(
|
|
fc(
|
|
obs_batch,
|
|
vars["{}_model.0.weight".format(layer_key[2][0])],
|
|
framework=fw,
|
|
),
|
|
vars["{}_model.0.weight".format(layer_key[2][1])],
|
|
framework=fw,
|
|
)
|
|
mean, log_std = np.split(expected_mean_logstd, 2, axis=-1)
|
|
if logp_func is None:
|
|
expected_logp = np.log(norm.pdf(a, mean, np.exp(log_std)))
|
|
else:
|
|
expected_logp = logp_func(mean, log_std, a)
|
|
logp = policy.compute_log_likelihoods(
|
|
np.array([a]),
|
|
preprocessed_obs_batch,
|
|
prev_action_batch=np.array([prev_a]) if prev_a else None,
|
|
prev_reward_batch=np.array([prev_r]) if prev_r else None,
|
|
actions_normalized=True,
|
|
)
|
|
check(logp, expected_logp[0], rtol=0.2)
|
|
# Test all available actions for their logp values.
|
|
else:
|
|
for a in [0, 1, 2, 3]:
|
|
count = actions.count(a)
|
|
expected_prob = count / num_actions
|
|
logp = policy.compute_log_likelihoods(
|
|
np.array([a]),
|
|
preprocessed_obs_batch,
|
|
prev_action_batch=np.array([prev_a]) if prev_a else None,
|
|
prev_reward_batch=np.array([prev_r]) if prev_r else None,
|
|
)
|
|
check(np.exp(logp), expected_prob, atol=0.2)
|
|
|
|
|
|
class TestComputeLogLikelihood(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls) -> None:
|
|
ray.init()
|
|
|
|
@classmethod
|
|
def tearDownClass(cls) -> None:
|
|
ray.shutdown()
|
|
|
|
def test_dqn(self):
|
|
"""Tests, whether DQN correctly computes logp in soft-q mode."""
|
|
config = dqn.DEFAULT_CONFIG.copy()
|
|
# Soft-Q for DQN.
|
|
config["exploration_config"] = {"type": "SoftQ", "temperature": 0.5}
|
|
config["seed"] = 42
|
|
do_test_log_likelihood(dqn.DQNTrainer, config)
|
|
|
|
def test_pg_cont(self):
|
|
"""Tests PG's (cont. actions) compute_log_likelihoods method."""
|
|
config = pg.DEFAULT_CONFIG.copy()
|
|
config["seed"] = 42
|
|
config["model"]["fcnet_hiddens"] = [10]
|
|
config["model"]["fcnet_activation"] = "linear"
|
|
prev_a = np.array([0.0])
|
|
do_test_log_likelihood(
|
|
pg.PGTrainer,
|
|
config,
|
|
prev_a,
|
|
continuous=True,
|
|
layer_key=("fc", (0, 2), ("_hidden_layers.0.", "_logits.")),
|
|
)
|
|
|
|
def test_pg_discr(self):
|
|
"""Tests PG's (cont. actions) compute_log_likelihoods method."""
|
|
config = pg.DEFAULT_CONFIG.copy()
|
|
config["seed"] = 42
|
|
prev_a = np.array(0)
|
|
do_test_log_likelihood(pg.PGTrainer, config, prev_a)
|
|
|
|
def test_ppo_cont(self):
|
|
"""Tests PPO's (cont. actions) compute_log_likelihoods method."""
|
|
config = ppo.DEFAULT_CONFIG.copy()
|
|
config["seed"] = 42
|
|
config["model"]["fcnet_hiddens"] = [10]
|
|
config["model"]["fcnet_activation"] = "linear"
|
|
prev_a = np.array([0.0])
|
|
do_test_log_likelihood(ppo.PPOTrainer, config, prev_a, continuous=True)
|
|
|
|
def test_ppo_discr(self):
|
|
"""Tests PPO's (discr. actions) compute_log_likelihoods method."""
|
|
config = ppo.DEFAULT_CONFIG.copy()
|
|
config["seed"] = 42
|
|
prev_a = np.array(0)
|
|
do_test_log_likelihood(ppo.PPOTrainer, config, prev_a)
|
|
|
|
def test_sac_cont(self):
|
|
"""Tests SAC's (cont. actions) compute_log_likelihoods method."""
|
|
config = sac.DEFAULT_CONFIG.copy()
|
|
config["seed"] = 42
|
|
config["policy_model"]["fcnet_hiddens"] = [10]
|
|
config["policy_model"]["fcnet_activation"] = "linear"
|
|
prev_a = np.array([0.0])
|
|
|
|
# SAC cont uses a squashed normal distribution. Implement it's logp
|
|
# logic here in numpy for comparing results.
|
|
def logp_func(means, log_stds, values, low=-1.0, high=1.0):
|
|
stds = np.exp(np.clip(log_stds, MIN_LOG_NN_OUTPUT, MAX_LOG_NN_OUTPUT))
|
|
unsquashed_values = np.arctanh((values - low) / (high - low) * 2.0 - 1.0)
|
|
log_prob_unsquashed = np.sum(
|
|
np.log(norm.pdf(unsquashed_values, means, stds)), -1
|
|
)
|
|
return log_prob_unsquashed - np.sum(
|
|
np.log(1 - np.tanh(unsquashed_values) ** 2), axis=-1
|
|
)
|
|
|
|
do_test_log_likelihood(
|
|
sac.SACTrainer,
|
|
config,
|
|
prev_a,
|
|
continuous=True,
|
|
layer_key=(
|
|
"fc",
|
|
(0, 2),
|
|
("action_model._hidden_layers.0.", "action_model._logits."),
|
|
),
|
|
logp_func=logp_func,
|
|
)
|
|
|
|
def test_sac_discr(self):
|
|
"""Tests SAC's (discrete actions) compute_log_likelihoods method."""
|
|
config = sac.DEFAULT_CONFIG.copy()
|
|
config["seed"] = 42
|
|
config["policy_model"]["fcnet_hiddens"] = [10]
|
|
config["policy_model"]["fcnet_activation"] = "linear"
|
|
prev_a = np.array(0)
|
|
|
|
do_test_log_likelihood(sac.SACTrainer, config, prev_a)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
|
|
sys.exit(pytest.main(["-v", __file__]))
|