ray/rllib/agents/dqn/dqn.py
Sven Mika 510c850651
[RLlib] SAC add discrete action support. (#7320)
* Exploration API (+EpsilonGreedy sub-class).

* Exploration API (+EpsilonGreedy sub-class).

* Cleanup/LINT.

* Add `deterministic` to generic Trainer config (NOTE: this is still ignored by most Agents).

* Add `error` option to deprecation_warning().

* WIP.

* Bug fix: Get exploration-info for tf framework.
Bug fix: Properly deprecate some DQN config keys.

* WIP.

* LINT.

* WIP.

* Split PerWorkerEpsilonGreedy out of EpsilonGreedy.
Docstrings.

* Fix bug in sampler.py in case Policy has self.exploration = None

* Update rllib/agents/dqn/dqn.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* WIP.

* Update rllib/agents/trainer.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* WIP.

* Change requests.

* LINT

* In tune/utils/util.py::deep_update() Only keep deep_updat'ing if both original and value are dicts. If value is not a dict, set

* Completely obsolete syn_replay_optimizer.py's parameters schedule_max_timesteps AND beta_annealing_fraction (replaced with prioritized_replay_beta_annealing_timesteps).

* Update rllib/evaluation/worker_set.py

Co-Authored-By: Eric Liang <ekhliang@gmail.com>

* Review fixes.

* Fix default value for DQN's exploration spec.

* LINT

* Fix recursion bug (wrong parent c'tor).

* Do not pass timestep to get_exploration_info.

* Update tf_policy.py

* Fix some remaining issues with test cases and remove more deprecated DQN/APEX exploration configs.

* Bug fix tf-action-dist

* DDPG incompatibility bug fix with new DQN exploration handling (which is imported by DDPG).

* Switch off exploration when getting action probs from off-policy-estimator's policy.

* LINT

* Fix test_checkpoint_restore.py.

* Deprecate all SAC exploration (unused) configs.

* Properly use `model.last_output()` everywhere. Instead of `model._last_output`.

* WIP.

* Take out set_epsilon from multi-agent-env test (not needed, decays anyway).

* WIP.

* Trigger re-test (flaky checkpoint-restore test).

* WIP.

* WIP.

* Add test case for deterministic action sampling in PPO.

* bug fix.

* Added deterministic test cases for different Agents.

* Fix problem with TupleActions in dynamic-tf-policy.

* Separate supported_spaces tests so they can be run separately for easier debugging.

* LINT.

* Fix autoregressive_action_dist.py test case.

* Re-test.

* Fix.

* Remove duplicate py_test rule from bazel.

* LINT.

* WIP.

* WIP.

* SAC fix.

* SAC fix.

* WIP.

* WIP.

* WIP.

* FIX 2 examples tests.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* Fix.

* LINT.

* Renamed test file.

* WIP.

* Add unittest.main.

* Make action_dist_class mandatory.

* fix

* FIX.

* WIP.

* WIP.

* Fix.

* Fix.

* Fix explorations test case (contextlib cannot find its own nullcontext??).

* Force torch to be installed for QMIX.

* LINT.

* Fix determine_tests_to_run.py.

* Fix determine_tests_to_run.py.

* WIP

* Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function).

* Add Random exploration component to tests (fixed issue with "static-graph randomness" via py_function).

* Rename some stuff.

* Rename some stuff.

* WIP.

* update.

* WIP.

* Gumbel Softmax Dist.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP.

* WIP

* WIP.

* WIP.

* Hypertune.

* Hypertune.

* Hypertune.

* Lock-in.

* Cleanup.

* LINT.

* Fix.

* Update rllib/policy/eager_tf_policy.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/agents/sac/sac_policy.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/agents/sac/sac_policy.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/models/tf/tf_action_dist.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Update rllib/models/tf/tf_action_dist.py

Co-Authored-By: Kristian Hartikainen <kristian.hartikainen@gmail.com>

* Fix items from review comments.

* Add dm_tree to RLlib dependencies.

* Add dm_tree to RLlib dependencies.

* Fix DQN test cases ((Torch)Categorical).

* Fix wrong pip install.

Co-authored-by: Eric Liang <ekhliang@gmail.com>
Co-authored-by: Kristian Hartikainen <kristian.hartikainen@gmail.com>
2020-03-06 10:37:12 -08:00

325 lines
13 KiB
Python

import logging
from ray.rllib.agents.trainer import with_common_config
from ray.rllib.agents.trainer_template import build_trainer
from ray.rllib.agents.dqn.dqn_policy import DQNTFPolicy
from ray.rllib.agents.dqn.simple_q_policy import SimpleQPolicy
from ray.rllib.optimizers import SyncReplayOptimizer
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID
from ray.rllib.utils.deprecation import deprecation_warning, DEPRECATED_VALUE
from ray.rllib.utils.exploration import PerWorkerEpsilonGreedy
logger = logging.getLogger(__name__)
# yapf: disable
# __sphinx_doc_begin__
DEFAULT_CONFIG = with_common_config({
# === Model ===
# Number of atoms for representing the distribution of return. When
# this is greater than 1, distributional Q-learning is used.
# the discrete supports are bounded by v_min and v_max
"num_atoms": 1,
"v_min": -10.0,
"v_max": 10.0,
# Whether to use noisy network
"noisy": False,
# control the initial value of noisy nets
"sigma0": 0.5,
# Whether to use dueling dqn
"dueling": True,
# Whether to use double dqn
"double_q": True,
# Postprocess model outputs with these hidden layers to compute the
# state and action values. See also the model config in catalog.py.
"hiddens": [256],
# N-step Q learning
"n_step": 1,
# === Exploration Settings (Experimental) ===
"exploration_config": {
# The Exploration class to use.
"type": "EpsilonGreedy",
# Config for the Exploration class' constructor:
"initial_epsilon": 1.0,
"final_epsilon": 0.02,
"epsilon_timesteps": 10000, # Timesteps over which to anneal epsilon.
# For soft_q, use:
# "exploration_config" = {
# "type": "SoftQ"
# "temperature": [float, e.g. 1.0]
# }
},
# Switch to greedy actions in evaluation workers.
"evaluation_config": {
"explore": False,
},
# TODO(sven): Make Exploration class for parameter noise.
# If True parameter space noise will be used for exploration
# See https://blog.openai.com/better-exploration-with-parameter-noise/
"parameter_noise": False,
# Minimum env steps to optimize for per train call. This value does
# not affect learning, only the length of iterations.
"timesteps_per_iteration": 1000,
# Update the target network every `target_network_update_freq` steps.
"target_network_update_freq": 500,
# === Replay buffer ===
# Size of the replay buffer. Note that if async_updates is set, then
# each worker will have a replay buffer of this size.
"buffer_size": 50000,
# If True prioritized replay buffer will be used.
"prioritized_replay": True,
# Alpha parameter for prioritized replay buffer.
"prioritized_replay_alpha": 0.6,
# Beta parameter for sampling from prioritized replay buffer.
"prioritized_replay_beta": 0.4,
# Final value of beta (by default, we use constant beta=0.4).
"final_prioritized_replay_beta": 0.4,
# Time steps over which the beta parameter is annealed.
"prioritized_replay_beta_annealing_timesteps": 20000,
# Epsilon to add to the TD errors when updating priorities.
"prioritized_replay_eps": 1e-6,
# Whether to LZ4 compress observations
"compress_observations": True,
# === Optimization ===
# Learning rate for adam optimizer
"lr": 5e-4,
# Learning rate schedule
"lr_schedule": None,
# Adam epsilon hyper parameter
"adam_epsilon": 1e-8,
# If not None, clip gradients during optimization at this value
"grad_norm_clipping": 40,
# How many steps of the model to sample before learning starts.
"learning_starts": 1000,
# Update the replay buffer with this many samples at once. Note that
# this setting applies per-worker if num_workers > 1.
"sample_batch_size": 4,
# Size of a batched sampled from replay buffer for training. Note that
# if async_updates is set, then each worker returns gradients for a
# batch of this size.
"train_batch_size": 32,
# === Parallelism ===
# Number of workers for collecting samples with. This only makes sense
# to increase if your environment is particularly slow to sample, or if
# you"re using the Async or Ape-X optimizers.
"num_workers": 0,
# Whether to compute priorities on workers.
"worker_side_prioritization": False,
# Prevent iterations from going lower than this time span
"min_iter_time_s": 1,
# DEPRECATED VALUES (set to -1 to indicate they have not been overwritten
# by user's config). If we don't set them here, we will get an error
# from the config-key checker.
"schedule_max_timesteps": DEPRECATED_VALUE,
"exploration_final_eps": DEPRECATED_VALUE,
"exploration_fraction": DEPRECATED_VALUE,
"beta_annealing_fraction": DEPRECATED_VALUE,
"per_worker_exploration": DEPRECATED_VALUE,
"softmax_temp": DEPRECATED_VALUE,
"soft_q": DEPRECATED_VALUE,
})
# __sphinx_doc_end__
# yapf: enable
def make_policy_optimizer(workers, config):
"""Create the single process DQN policy optimizer.
Returns:
SyncReplayOptimizer: Used for generic off-policy Trainers.
"""
return SyncReplayOptimizer(
workers,
# TODO(sven): Move all PR-beta decays into Schedule components.
learning_starts=config["learning_starts"],
buffer_size=config["buffer_size"],
prioritized_replay=config["prioritized_replay"],
prioritized_replay_alpha=config["prioritized_replay_alpha"],
prioritized_replay_beta=config["prioritized_replay_beta"],
prioritized_replay_beta_annealing_timesteps=config[
"prioritized_replay_beta_annealing_timesteps"],
final_prioritized_replay_beta=config["final_prioritized_replay_beta"],
prioritized_replay_eps=config["prioritized_replay_eps"],
train_batch_size=config["train_batch_size"],
**config["optimizer"])
def validate_config_and_setup_param_noise(config):
"""Checks and updates the config based on settings.
Rewrites sample_batch_size to take into account n_step truncation.
"""
# PyTorch check.
if config["use_pytorch"]:
raise ValueError("DQN does not support PyTorch yet! Use tf instead.")
# TODO(sven): Remove at some point.
# Backward compatibility of epsilon-exploration config AND beta-annealing
# fraction settings (both based on schedule_max_timesteps, which is
# deprecated).
schedule_max_timesteps = None
if config.get("schedule_max_timesteps", DEPRECATED_VALUE) != \
DEPRECATED_VALUE:
deprecation_warning(
"schedule_max_timesteps",
"exploration_config.epsilon_timesteps AND "
"prioritized_replay_beta_annealing_timesteps")
schedule_max_timesteps = config["schedule_max_timesteps"]
if config.get("exploration_final_eps", DEPRECATED_VALUE) != \
DEPRECATED_VALUE:
deprecation_warning("exploration_final_eps",
"exploration_config.final_epsilon")
if isinstance(config["exploration_config"], dict):
config["exploration_config"]["final_epsilon"] = \
config.pop("exploration_final_eps")
if config.get("exploration_fraction", DEPRECATED_VALUE) != \
DEPRECATED_VALUE:
assert schedule_max_timesteps is not None
deprecation_warning("exploration_fraction",
"exploration_config.epsilon_timesteps")
if isinstance(config["exploration_config"], dict):
config["exploration_config"]["epsilon_timesteps"] = config.pop(
"exploration_fraction") * schedule_max_timesteps
if config.get("beta_annealing_fraction", DEPRECATED_VALUE) != \
DEPRECATED_VALUE:
assert schedule_max_timesteps is not None
deprecation_warning(
"beta_annealing_fraction (decimal)",
"prioritized_replay_beta_annealing_timesteps (int)")
config["prioritized_replay_beta_annealing_timesteps"] = config.pop(
"beta_annealing_fraction") * schedule_max_timesteps
if config.get("per_worker_exploration", DEPRECATED_VALUE) != \
DEPRECATED_VALUE:
deprecation_warning("per_worker_exploration",
"exploration_config.type=PerWorkerEpsilonGreedy")
if isinstance(config["exploration_config"], dict):
config["exploration_config"]["type"] = PerWorkerEpsilonGreedy
if config.get("softmax_temp", DEPRECATED_VALUE) != DEPRECATED_VALUE:
deprecation_warning(
"soft_q", "exploration_config={"
"type=StochasticSampling, temperature=[float]"
"}")
if config.get("softmax_temp", 1.0) < 0.00001:
logger.warning("softmax temp very low: Clipped it to 0.00001.")
config["softmax_temperature"] = 0.00001
if config.get("soft_q", DEPRECATED_VALUE) != DEPRECATED_VALUE:
deprecation_warning(
"soft_q", "exploration_config={"
"type=SoftQ, temperature=[float]"
"}")
config["exploration_config"] = {
"type": "SoftQ",
"temperature": config.get("softmax_temp", 1.0)
}
# Update effective batch size to include n-step
adjusted_batch_size = max(config["sample_batch_size"],
config.get("n_step", 1))
config["sample_batch_size"] = adjusted_batch_size
# Setup parameter noise.
if config.get("parameter_noise", False):
if config["batch_mode"] != "complete_episodes":
raise ValueError("Exploration with parameter space noise requires "
"batch_mode to be complete_episodes.")
if config.get("noisy", False):
raise ValueError("Exploration with parameter space noise and "
"noisy network cannot be used at the same time.")
start_callback = config["callbacks"].get("on_episode_start")
def on_episode_start(info):
# as a callback function to sample and pose parameter space
# noise on the parameters of network
policies = info["policy"]
for pi in policies.values():
pi.add_parameter_noise()
if start_callback is not None:
start_callback(info)
config["callbacks"]["on_episode_start"] = on_episode_start
end_callback = config["callbacks"].get("on_episode_end")
def on_episode_end(info):
# as a callback function to monitor the distance
# between noisy policy and original policy
policies = info["policy"]
episode = info["episode"]
model = policies[DEFAULT_POLICY_ID].model
if hasattr(model, "pi_distance"):
episode.custom_metrics["policy_distance"] = model.pi_distance
if end_callback is not None:
end_callback(info)
config["callbacks"]["on_episode_end"] = on_episode_end
def get_initial_state(config):
return {
"last_target_update_ts": 0,
"num_target_updates": 0,
}
# TODO(sven): Move this to generic Trainer. Every Algo should do this.
def update_worker_exploration(trainer):
"""Sets epsilon exploration values in all policies to updated values.
According to current time-step.
Args:
trainer (Trainer): The Trainer object for the DQN.
"""
# Store some data for metrics after learning.
global_timestep = trainer.optimizer.num_steps_sampled
trainer.train_start_timestep = global_timestep
# Get all current exploration-infos (from Policies, which cache this info).
trainer.exploration_infos = trainer.workers.foreach_trainable_policy(
lambda p, _: p.get_exploration_info())
def after_train_result(trainer, result):
"""Add some DQN specific metrics to results."""
global_timestep = trainer.optimizer.num_steps_sampled
result.update(
timesteps_this_iter=global_timestep - trainer.train_start_timestep,
info=dict({
"exploration_infos": trainer.exploration_infos,
"num_target_updates": trainer.state["num_target_updates"],
}, **trainer.optimizer.stats()))
def update_target_if_needed(trainer, fetches):
"""Update the target network in configured intervals."""
global_timestep = trainer.optimizer.num_steps_sampled
if global_timestep - trainer.state["last_target_update_ts"] > \
trainer.config["target_network_update_freq"]:
trainer.workers.local_worker().foreach_trainable_policy(
lambda p, _: p.update_target())
trainer.state["last_target_update_ts"] = global_timestep
trainer.state["num_target_updates"] += 1
GenericOffPolicyTrainer = build_trainer(
name="GenericOffPolicyAlgorithm",
default_policy=None,
default_config=DEFAULT_CONFIG,
validate_config=validate_config_and_setup_param_noise,
get_initial_state=get_initial_state,
make_policy_optimizer=make_policy_optimizer,
before_train_step=update_worker_exploration,
after_optimizer_step=update_target_if_needed,
after_train_result=after_train_result)
DQNTrainer = GenericOffPolicyTrainer.with_updates(
name="DQN", default_policy=DQNTFPolicy, default_config=DEFAULT_CONFIG)
SimpleQTrainer = DQNTrainer.with_updates(default_policy=SimpleQPolicy)