ray/rllib/utils/exploration/per_worker_epsilon_greedy.py
Balaji Veeramani 7f1bacc7dc
[CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes.
2022-01-29 18:41:57 -08:00

56 lines
2 KiB
Python

from gym.spaces import Space
from typing import Optional
from ray.rllib.utils.exploration.epsilon_greedy import EpsilonGreedy
from ray.rllib.utils.schedules import ConstantSchedule
class PerWorkerEpsilonGreedy(EpsilonGreedy):
"""A per-worker epsilon-greedy class for distributed algorithms.
Sets the epsilon schedules of individual workers to a constant:
0.4 ^ (1 + [worker-index] / float([num-workers] - 1) * 7)
See Ape-X paper.
"""
def __init__(
self,
action_space: Space,
*,
framework: str,
num_workers: Optional[int],
worker_index: Optional[int],
**kwargs
):
"""Create a PerWorkerEpsilonGreedy exploration class.
Args:
action_space: The gym action space used by the environment.
num_workers: The overall number of workers used.
worker_index: The index of the Worker using this
Exploration.
framework: One of None, "tf", "torch".
"""
epsilon_schedule = None
# Use a fixed, different epsilon per worker. See: Ape-X paper.
assert worker_index <= num_workers, (worker_index, num_workers)
if num_workers > 0:
if worker_index > 0:
# From page 5 of https://arxiv.org/pdf/1803.00933.pdf
alpha, eps, i = 7, 0.4, worker_index - 1
num_workers_minus_1 = float(num_workers - 1) if num_workers > 1 else 1.0
constant_eps = eps ** (1 + (i / num_workers_minus_1) * alpha)
epsilon_schedule = ConstantSchedule(constant_eps, framework=framework)
# Local worker should have zero exploration so that eval
# rollouts run properly.
else:
epsilon_schedule = ConstantSchedule(0.0, framework=framework)
super().__init__(
action_space,
epsilon_schedule=epsilon_schedule,
framework=framework,
num_workers=num_workers,
worker_index=worker_index,
**kwargs
)