mirror of
https://github.com/vale981/ray
synced 2025-03-06 18:41:40 -05:00

* Create a core set of algorithms tests to run nightly. * Run release tests under tf, tf2, and torch frameworks. * Fix * Add eager_tracing option for tf2 framework. * make sure core tests can run in parallel. * cql * Report progress while running nightly/weekly tests. * Innclude SAC in nightly lineup. * Revert changes to learning_tests * rebrand to performance test. * update build_pipeline.py with new performance_tests name. * Record stats. * bug fix, need to populate experiments dict. * Alphabetize yaml files. * Allow specifying frameworks. And do not run tf2 by default. * remove some debugging code. * fix * Undo testing changes. * Do not run CQL regression for now. * LINT. Co-authored-by: sven1977 <svenmika1977@gmail.com>
136 lines
3.7 KiB
YAML
136 lines
3.7 KiB
YAML
apex-breakoutnoframeskip-v4:
|
|
env: BreakoutNoFrameskip-v4
|
|
run: APEX
|
|
frameworks: [ "tf", "tf2", "torch" ]
|
|
stop:
|
|
time_total_s: 3600
|
|
config:
|
|
double_q: false
|
|
dueling: false
|
|
num_atoms: 1
|
|
noisy: false
|
|
n_step: 3
|
|
lr: .0001
|
|
adam_epsilon: .00015
|
|
hiddens: [512]
|
|
buffer_size: 1000000
|
|
exploration_config:
|
|
epsilon_timesteps: 200000
|
|
final_epsilon: 0.01
|
|
prioritized_replay_alpha: 0.5
|
|
final_prioritized_replay_beta: 1.0
|
|
prioritized_replay_beta_annealing_timesteps: 2000000
|
|
num_gpus: 1
|
|
num_workers: 8
|
|
num_envs_per_worker: 8
|
|
rollout_fragment_length: 20
|
|
train_batch_size: 512
|
|
target_network_update_freq: 50000
|
|
timesteps_per_iteration: 25000
|
|
|
|
appo-pongnoframeskip-v4:
|
|
env: PongNoFrameskip-v4
|
|
run: APPO
|
|
frameworks: [ "tf", "tf2", "torch" ]
|
|
stop:
|
|
time_total_s: 2000
|
|
config:
|
|
vtrace: True
|
|
use_kl_loss: False
|
|
rollout_fragment_length: 50
|
|
train_batch_size: 750
|
|
num_workers: 31
|
|
broadcast_interval: 1
|
|
max_sample_requests_in_flight_per_worker: 1
|
|
num_multi_gpu_tower_stacks: 1
|
|
num_envs_per_worker: 8
|
|
num_sgd_iter: 2
|
|
vf_loss_coeff: 1.0
|
|
clip_param: 0.3
|
|
num_gpus: 1
|
|
grad_clip: 10
|
|
model:
|
|
dim: 42
|
|
|
|
# Bring cql test back after we make sure it learns.
|
|
#cql-halfcheetahbulletenv-v0:
|
|
# env: HalfCheetahBulletEnv-v0
|
|
# run: CQL
|
|
# frameworks: [ "tf", "tf2", "torch" ]
|
|
# stop:
|
|
# time_total_s: 1800
|
|
# config:
|
|
# # Use input produced by expert SAC algo.
|
|
# input: ["~/halfcheetah_expert_sac.zip"]
|
|
# actions_in_input_normalized: true
|
|
#
|
|
# soft_horizon: False
|
|
# horizon: 1000
|
|
# Q_model:
|
|
# fcnet_activation: relu
|
|
# fcnet_hiddens: [256, 256, 256]
|
|
# policy_model:
|
|
# fcnet_activation: relu
|
|
# fcnet_hiddens: [256, 256, 256]
|
|
# tau: 0.005
|
|
# target_entropy: auto
|
|
# no_done_at_end: false
|
|
# n_step: 3
|
|
# rollout_fragment_length: 1
|
|
# prioritized_replay: false
|
|
# train_batch_size: 256
|
|
# target_network_update_freq: 0
|
|
# timesteps_per_iteration: 1000
|
|
# learning_starts: 256
|
|
# optimization:
|
|
# actor_learning_rate: 0.0001
|
|
# critic_learning_rate: 0.0003
|
|
# entropy_learning_rate: 0.0001
|
|
# num_workers: 0
|
|
# num_gpus: 1
|
|
# metrics_smoothing_episodes: 5
|
|
#
|
|
# # CQL Configs
|
|
# min_q_weight: 5.0
|
|
# bc_iters: 20000
|
|
# temperature: 1.0
|
|
# num_actions: 10
|
|
# lagrangian: False
|
|
#
|
|
# # Switch on online evaluation.
|
|
# evaluation_interval: 3
|
|
# evaluation_config:
|
|
# input: sampler
|
|
|
|
sac-halfcheetahbulletenv-v0:
|
|
env: HalfCheetahBulletEnv-v0
|
|
run: SAC
|
|
frameworks: [ "tf", "tf2", "torch" ]
|
|
stop:
|
|
time_total_s: 3600
|
|
config:
|
|
horizon: 1000
|
|
soft_horizon: false
|
|
Q_model:
|
|
fcnet_activation: relu
|
|
fcnet_hiddens: [256, 256]
|
|
policy_model:
|
|
fcnet_activation: relu
|
|
fcnet_hiddens: [256, 256]
|
|
tau: 0.005
|
|
target_entropy: auto
|
|
no_done_at_end: false
|
|
n_step: 3
|
|
rollout_fragment_length: 1
|
|
prioritized_replay: true
|
|
train_batch_size: 256
|
|
target_network_update_freq: 1
|
|
timesteps_per_iteration: 1000
|
|
learning_starts: 10000
|
|
optimization:
|
|
actor_learning_rate: 0.0003
|
|
critic_learning_rate: 0.0003
|
|
entropy_learning_rate: 0.0003
|
|
num_workers: 0
|
|
num_gpus: 1
|
|
metrics_smoothing_episodes: 5
|