apex-breakoutnoframeskip-v4: env: BreakoutNoFrameskip-v4 run: APEX frameworks: [ "tf", "tf2", "torch" ] stop: time_total_s: 3600 config: double_q: false dueling: false num_atoms: 1 noisy: false n_step: 3 lr: .0001 adam_epsilon: .00015 hiddens: [512] buffer_size: 1000000 exploration_config: epsilon_timesteps: 200000 final_epsilon: 0.01 prioritized_replay_alpha: 0.5 final_prioritized_replay_beta: 1.0 prioritized_replay_beta_annealing_timesteps: 2000000 num_gpus: 1 num_workers: 8 num_envs_per_worker: 8 rollout_fragment_length: 20 train_batch_size: 512 target_network_update_freq: 50000 timesteps_per_iteration: 25000 appo-pongnoframeskip-v4: env: PongNoFrameskip-v4 run: APPO frameworks: [ "tf", "tf2", "torch" ] stop: time_total_s: 2000 config: vtrace: True use_kl_loss: False rollout_fragment_length: 50 train_batch_size: 750 num_workers: 31 broadcast_interval: 1 max_sample_requests_in_flight_per_worker: 1 num_multi_gpu_tower_stacks: 1 num_envs_per_worker: 8 num_sgd_iter: 2 vf_loss_coeff: 1.0 clip_param: 0.3 num_gpus: 1 grad_clip: 10 model: dim: 42 # Bring cql test back after we make sure it learns. #cql-halfcheetahbulletenv-v0: # env: HalfCheetahBulletEnv-v0 # run: CQL # frameworks: [ "tf", "tf2", "torch" ] # stop: # time_total_s: 1800 # config: # # Use input produced by expert SAC algo. # input: ["~/halfcheetah_expert_sac.zip"] # actions_in_input_normalized: true # # soft_horizon: False # horizon: 1000 # Q_model: # fcnet_activation: relu # fcnet_hiddens: [256, 256, 256] # policy_model: # fcnet_activation: relu # fcnet_hiddens: [256, 256, 256] # tau: 0.005 # target_entropy: auto # no_done_at_end: false # n_step: 3 # rollout_fragment_length: 1 # prioritized_replay: false # train_batch_size: 256 # target_network_update_freq: 0 # timesteps_per_iteration: 1000 # learning_starts: 256 # optimization: # actor_learning_rate: 0.0001 # critic_learning_rate: 0.0003 # entropy_learning_rate: 0.0001 # num_workers: 0 # num_gpus: 1 # metrics_smoothing_episodes: 5 # # # CQL Configs # min_q_weight: 5.0 # bc_iters: 20000 # temperature: 1.0 # num_actions: 10 # lagrangian: False # # # Switch on online evaluation. # evaluation_interval: 3 # evaluation_config: # input: sampler sac-halfcheetahbulletenv-v0: env: HalfCheetahBulletEnv-v0 run: SAC frameworks: [ "tf", "tf2", "torch" ] stop: time_total_s: 3600 config: horizon: 1000 soft_horizon: false Q_model: fcnet_activation: relu fcnet_hiddens: [256, 256] policy_model: fcnet_activation: relu fcnet_hiddens: [256, 256] tau: 0.005 target_entropy: auto no_done_at_end: false n_step: 3 rollout_fragment_length: 1 prioritized_replay: true train_batch_size: 256 target_network_update_freq: 1 timesteps_per_iteration: 1000 learning_starts: 10000 optimization: actor_learning_rate: 0.0003 critic_learning_rate: 0.0003 entropy_learning_rate: 0.0003 num_workers: 0 num_gpus: 1 metrics_smoothing_episodes: 5