mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
56 lines
1.6 KiB
Python
56 lines
1.6 KiB
Python
# This workload tests running APEX
|
|
|
|
import ray
|
|
from ray.tune import run_experiments
|
|
from ray.tune.utils.release_test_util import ProgressCallback
|
|
|
|
num_redis_shards = 5
|
|
redis_max_memory = 10 ** 8
|
|
object_store_memory = 10 ** 9
|
|
num_nodes = 3
|
|
|
|
message = (
|
|
"Make sure there is enough memory on this machine to run this "
|
|
"workload. We divide the system memory by 2 to provide a buffer."
|
|
)
|
|
assert (
|
|
num_nodes * object_store_memory + num_redis_shards * redis_max_memory
|
|
< ray._private.utils.get_system_memory() / 2
|
|
), message
|
|
|
|
# Simulate a cluster on one machine.
|
|
|
|
# cluster = Cluster()
|
|
# for i in range(num_nodes):
|
|
# cluster.add_node(redis_port=6379 if i == 0 else None,
|
|
# num_redis_shards=num_redis_shards if i == 0 else None,
|
|
# num_cpus=20,
|
|
# num_gpus=0,
|
|
# resources={str(i): 2},
|
|
# object_store_memory=object_store_memory,
|
|
# redis_max_memory=redis_max_memory,
|
|
# dashboard_host="0.0.0.0")
|
|
# ray.init(address=cluster.address)
|
|
ray.init()
|
|
|
|
# Run the workload.
|
|
|
|
run_experiments(
|
|
{
|
|
"apex": {
|
|
"run": "APEX",
|
|
"env": "Pong-v0",
|
|
"config": {
|
|
"num_workers": 3,
|
|
"num_gpus": 0,
|
|
"buffer_size": 10000,
|
|
"learning_starts": 0,
|
|
"rollout_fragment_length": 1,
|
|
"train_batch_size": 1,
|
|
"min_iter_time_s": 10,
|
|
"timesteps_per_iteration": 10,
|
|
},
|
|
}
|
|
},
|
|
callbacks=[ProgressCallback()],
|
|
)
|