ray/rllib/agents/marwil/marwil_torch_policy.py
Balaji Veeramani 7f1bacc7dc
[CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes.
2022-01-29 18:41:57 -08:00

122 lines
4.2 KiB
Python

import gym
from typing import Dict
import ray
from ray.rllib.agents.a3c.a3c_torch_policy import ValueNetworkMixin
from ray.rllib.agents.marwil.marwil_tf_policy import postprocess_advantages
from ray.rllib.evaluation.postprocessing import Postprocessing
from ray.rllib.policy.policy_template import build_policy_class
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.torch_utils import apply_grad_clipping, explained_variance
from ray.rllib.utils.typing import TrainerConfigDict, TensorType
from ray.rllib.policy.policy import Policy
from ray.rllib.models.action_dist import ActionDistribution
from ray.rllib.models.modelv2 import ModelV2
torch, _ = try_import_torch()
def marwil_loss(
policy: Policy,
model: ModelV2,
dist_class: ActionDistribution,
train_batch: SampleBatch,
) -> TensorType:
model_out, _ = model(train_batch)
action_dist = dist_class(model_out, model)
actions = train_batch[SampleBatch.ACTIONS]
# log\pi_\theta(a|s)
logprobs = action_dist.logp(actions)
# Advantage estimation.
if policy.config["beta"] != 0.0:
cumulative_rewards = train_batch[Postprocessing.ADVANTAGES]
state_values = model.value_function()
adv = cumulative_rewards - state_values
adv_squared_mean = torch.mean(torch.pow(adv, 2.0))
explained_var = explained_variance(cumulative_rewards, state_values)
policy.explained_variance = torch.mean(explained_var)
# Policy loss.
# Update averaged advantage norm.
rate = policy.config["moving_average_sqd_adv_norm_update_rate"]
policy._moving_average_sqd_adv_norm.add_(
rate * (adv_squared_mean - policy._moving_average_sqd_adv_norm)
)
# Exponentially weighted advantages.
exp_advs = torch.exp(
policy.config["beta"]
* (adv / (1e-8 + torch.pow(policy._moving_average_sqd_adv_norm, 0.5)))
).detach()
# Value loss.
policy.v_loss = 0.5 * adv_squared_mean
else:
# Policy loss (simple BC loss term).
exp_advs = 1.0
# Value loss.
policy.v_loss = 0.0
# logprob loss alone tends to push action distributions to
# have very low entropy, resulting in worse performance for
# unfamiliar situations.
# A scaled logstd loss term encourages stochasticity, thus
# alleviate the problem to some extent.
logstd_coeff = policy.config["bc_logstd_coeff"]
if logstd_coeff > 0.0:
logstds = torch.mean(action_dist.log_std, dim=1)
else:
logstds = 0.0
policy.p_loss = -torch.mean(exp_advs * (logprobs + logstd_coeff * logstds))
# Combine both losses.
policy.total_loss = policy.p_loss + policy.config["vf_coeff"] * policy.v_loss
return policy.total_loss
def stats(policy: Policy, train_batch: SampleBatch) -> Dict[str, TensorType]:
stats = {
"policy_loss": policy.p_loss,
"total_loss": policy.total_loss,
}
if policy.config["beta"] != 0.0:
stats["moving_average_sqd_adv_norm"] = policy._moving_average_sqd_adv_norm
stats["vf_explained_var"] = policy.explained_variance
stats["vf_loss"] = policy.v_loss
return stats
def setup_mixins(
policy: Policy,
obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
config: TrainerConfigDict,
) -> None:
# Setup Value branch of our NN.
ValueNetworkMixin.__init__(policy, obs_space, action_space, config)
# Not needed for pure BC.
if policy.config["beta"] != 0.0:
# Set up a torch-var for the squared moving avg. advantage norm.
policy._moving_average_sqd_adv_norm = torch.tensor(
[policy.config["moving_average_sqd_adv_norm_start"]],
dtype=torch.float32,
requires_grad=False,
).to(policy.device)
MARWILTorchPolicy = build_policy_class(
name="MARWILTorchPolicy",
framework="torch",
loss_fn=marwil_loss,
get_default_config=lambda: ray.rllib.agents.marwil.marwil.DEFAULT_CONFIG,
stats_fn=stats,
postprocess_fn=postprocess_advantages,
extra_grad_process_fn=apply_grad_clipping,
before_loss_init=setup_mixins,
mixins=[ValueNetworkMixin],
)