ray/rllib/optimizers/sync_samples_optimizer.py

96 lines
3.9 KiB
Python

import logging
import ray
from ray.rllib.optimizers.policy_optimizer import PolicyOptimizer
from ray.rllib.policy.sample_batch import SampleBatch, DEFAULT_POLICY_ID
from ray.rllib.utils.annotations import override
from ray.rllib.utils.filter import RunningStat
from ray.rllib.utils.sgd import do_minibatch_sgd
from ray.rllib.utils.timer import TimerStat
from ray.rllib.utils.memory import ray_get_and_free
logger = logging.getLogger(__name__)
class SyncSamplesOptimizer(PolicyOptimizer):
"""A simple synchronous RL optimizer.
In each step, this optimizer pulls samples from a number of remote
workers, concatenates them, and then updates a local model. The updated
model weights are then broadcast to all remote workers.
"""
def __init__(self,
workers,
num_sgd_iter=1,
train_batch_size=1,
sgd_minibatch_size=0,
standardize_fields=frozenset([])):
PolicyOptimizer.__init__(self, workers)
self.update_weights_timer = TimerStat()
self.standardize_fields = standardize_fields
self.sample_timer = TimerStat()
self.grad_timer = TimerStat()
self.throughput = RunningStat()
self.num_sgd_iter = num_sgd_iter
self.sgd_minibatch_size = sgd_minibatch_size
self.train_batch_size = train_batch_size
self.learner_stats = {}
self.policies = dict(self.workers.local_worker()
.foreach_trainable_policy(lambda p, i: (i, p)))
logger.debug("Policies to train: {}".format(self.policies))
@override(PolicyOptimizer)
def step(self):
with self.update_weights_timer:
if self.workers.remote_workers():
weights = ray.put(self.workers.local_worker().get_weights())
for e in self.workers.remote_workers():
e.set_weights.remote(weights)
with self.sample_timer:
samples = []
while sum(s.count for s in samples) < self.train_batch_size:
if self.workers.remote_workers():
samples.extend(
ray_get_and_free([
e.sample.remote()
for e in self.workers.remote_workers()
]))
else:
samples.append(self.workers.local_worker().sample())
samples = SampleBatch.concat_samples(samples)
self.sample_timer.push_units_processed(samples.count)
with self.grad_timer:
fetches = do_minibatch_sgd(samples, self.policies,
self.workers.local_worker(),
self.num_sgd_iter,
self.sgd_minibatch_size,
self.standardize_fields)
self.grad_timer.push_units_processed(samples.count)
if len(fetches) == 1 and DEFAULT_POLICY_ID in fetches:
self.learner_stats = fetches[DEFAULT_POLICY_ID]
else:
self.learner_stats = fetches
self.num_steps_sampled += samples.count
self.num_steps_trained += samples.count
return self.learner_stats
@override(PolicyOptimizer)
def stats(self):
return dict(
PolicyOptimizer.stats(self), **{
"sample_time_ms": round(1000 * self.sample_timer.mean, 3),
"grad_time_ms": round(1000 * self.grad_timer.mean, 3),
"update_time_ms": round(1000 * self.update_weights_timer.mean,
3),
"opt_peak_throughput": round(self.grad_timer.mean_throughput,
3),
"sample_peak_throughput": round(
self.sample_timer.mean_throughput, 3),
"opt_samples": round(self.grad_timer.mean_units_processed, 3),
"learner": self.learner_stats,
})