import logging import ray from ray.rllib.optimizers.policy_optimizer import PolicyOptimizer from ray.rllib.policy.sample_batch import SampleBatch, DEFAULT_POLICY_ID from ray.rllib.utils.annotations import override from ray.rllib.utils.filter import RunningStat from ray.rllib.utils.sgd import do_minibatch_sgd from ray.rllib.utils.timer import TimerStat from ray.rllib.utils.memory import ray_get_and_free logger = logging.getLogger(__name__) class SyncSamplesOptimizer(PolicyOptimizer): """A simple synchronous RL optimizer. In each step, this optimizer pulls samples from a number of remote workers, concatenates them, and then updates a local model. The updated model weights are then broadcast to all remote workers. """ def __init__(self, workers, num_sgd_iter=1, train_batch_size=1, sgd_minibatch_size=0, standardize_fields=frozenset([])): PolicyOptimizer.__init__(self, workers) self.update_weights_timer = TimerStat() self.standardize_fields = standardize_fields self.sample_timer = TimerStat() self.grad_timer = TimerStat() self.throughput = RunningStat() self.num_sgd_iter = num_sgd_iter self.sgd_minibatch_size = sgd_minibatch_size self.train_batch_size = train_batch_size self.learner_stats = {} self.policies = dict(self.workers.local_worker() .foreach_trainable_policy(lambda p, i: (i, p))) logger.debug("Policies to train: {}".format(self.policies)) @override(PolicyOptimizer) def step(self): with self.update_weights_timer: if self.workers.remote_workers(): weights = ray.put(self.workers.local_worker().get_weights()) for e in self.workers.remote_workers(): e.set_weights.remote(weights) with self.sample_timer: samples = [] while sum(s.count for s in samples) < self.train_batch_size: if self.workers.remote_workers(): samples.extend( ray_get_and_free([ e.sample.remote() for e in self.workers.remote_workers() ])) else: samples.append(self.workers.local_worker().sample()) samples = SampleBatch.concat_samples(samples) self.sample_timer.push_units_processed(samples.count) with self.grad_timer: fetches = do_minibatch_sgd(samples, self.policies, self.workers.local_worker(), self.num_sgd_iter, self.sgd_minibatch_size, self.standardize_fields) self.grad_timer.push_units_processed(samples.count) if len(fetches) == 1 and DEFAULT_POLICY_ID in fetches: self.learner_stats = fetches[DEFAULT_POLICY_ID] else: self.learner_stats = fetches self.num_steps_sampled += samples.count self.num_steps_trained += samples.count return self.learner_stats @override(PolicyOptimizer) def stats(self): return dict( PolicyOptimizer.stats(self), **{ "sample_time_ms": round(1000 * self.sample_timer.mean, 3), "grad_time_ms": round(1000 * self.grad_timer.mean, 3), "update_time_ms": round(1000 * self.update_weights_timer.mean, 3), "opt_peak_throughput": round(self.grad_timer.mean_throughput, 3), "sample_peak_throughput": round( self.sample_timer.mean_throughput, 3), "opt_samples": round(self.grad_timer.mean_units_processed, 3), "learner": self.learner_stats, })