ray/rllib/agents/marwil/tests/test_bc.py
Balaji Veeramani 7f1bacc7dc
[CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes.
2022-01-29 18:41:57 -08:00

84 lines
2.7 KiB
Python

import os
from pathlib import Path
import unittest
import ray
import ray.rllib.agents.marwil as marwil
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import (
check_compute_single_action,
check_train_results,
framework_iterator,
)
tf1, tf, tfv = try_import_tf()
class TestBC(unittest.TestCase):
@classmethod
def setUpClass(cls):
ray.init()
@classmethod
def tearDownClass(cls):
ray.shutdown()
def test_bc_compilation_and_learning_from_offline_file(self):
"""Test whether a BCTrainer can be built with all frameworks.
And learns from a historic-data file (while being evaluated on an
actual env using evaluation_num_workers > 0).
"""
rllib_dir = Path(__file__).parent.parent.parent.parent
print("rllib dir={}".format(rllib_dir))
data_file = os.path.join(rllib_dir, "tests/data/cartpole/large.json")
print("data_file={} exists={}".format(data_file, os.path.isfile(data_file)))
config = marwil.BC_DEFAULT_CONFIG.copy()
config["num_workers"] = 0 # Run locally.
config["evaluation_interval"] = 3
config["evaluation_num_workers"] = 1
config["evaluation_duration"] = 5
config["evaluation_parallel_to_training"] = True
# Evaluate on actual environment.
config["evaluation_config"] = {"input": "sampler"}
# Learn from offline data.
config["input"] = [data_file]
num_iterations = 350
min_reward = 70.0
# Test for all frameworks.
for _ in framework_iterator(config, frameworks=("tf", "torch")):
trainer = marwil.BCTrainer(config=config, env="CartPole-v0")
learnt = False
for i in range(num_iterations):
results = trainer.train()
check_train_results(results)
print(results)
eval_results = results.get("evaluation")
if eval_results:
print("iter={} R={}".format(i, eval_results["episode_reward_mean"]))
# Learn until good reward is reached in the actual env.
if eval_results["episode_reward_mean"] > min_reward:
print("learnt!")
learnt = True
break
if not learnt:
raise ValueError(
"BCTrainer did not reach {} reward from expert offline "
"data!".format(min_reward)
)
check_compute_single_action(trainer, include_prev_action_reward=True)
trainer.stop()
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))