mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
46 lines
1.5 KiB
Python
46 lines
1.5 KiB
Python
import gym
|
|
from gym.spaces import Box, Discrete
|
|
import numpy as np
|
|
|
|
|
|
class RepeatAfterMeEnv(gym.Env):
|
|
"""Env in which the observation at timestep minus n must be repeated."""
|
|
|
|
def __init__(self, config=None):
|
|
config = config or {}
|
|
if config.get("continuous"):
|
|
self.observation_space = Box(-1.0, 1.0, (2,))
|
|
else:
|
|
self.observation_space = Discrete(2)
|
|
|
|
self.action_space = self.observation_space
|
|
# Note: Set `repeat_delay` to 0 for simply repeating the seen
|
|
# observation (no delay).
|
|
self.delay = config.get("repeat_delay", 1)
|
|
self.episode_len = config.get("episode_len", 100)
|
|
self.history = []
|
|
|
|
def reset(self):
|
|
self.history = [0] * self.delay
|
|
return self._next_obs()
|
|
|
|
def step(self, action):
|
|
obs = self.history[-(1 + self.delay)]
|
|
|
|
# Box: -abs(diff).
|
|
if isinstance(self.action_space, Box):
|
|
reward = -np.sum(np.abs(action - obs))
|
|
# Discrete: +1.0 if exact match, -1.0 otherwise.
|
|
if isinstance(self.action_space, Discrete):
|
|
reward = 1.0 if action == obs else -1.0
|
|
|
|
done = len(self.history) > self.episode_len
|
|
return self._next_obs(), reward, done, {}
|
|
|
|
def _next_obs(self):
|
|
if isinstance(self.observation_space, Box):
|
|
token = np.random.random(size=(2,))
|
|
else:
|
|
token = np.random.choice([0, 1])
|
|
self.history.append(token)
|
|
return token
|