mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
76 lines
2.3 KiB
Python
76 lines
2.3 KiB
Python
from gym.spaces import Box, Discrete
|
|
import numpy as np
|
|
|
|
from rllib.models.tf.attention_net import TrXLNet
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
|
|
def bit_shift_generator(seq_length, shift, batch_size):
|
|
while True:
|
|
values = np.array([0.0, 1.0], dtype=np.float32)
|
|
seq = np.random.choice(values, (batch_size, seq_length, 1))
|
|
targets = np.squeeze(np.roll(seq, shift, axis=1).astype(np.int32))
|
|
targets[:, :shift] = 0
|
|
yield seq, targets
|
|
|
|
|
|
def train_loss(targets, outputs):
|
|
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
|
labels=targets, logits=outputs
|
|
)
|
|
return tf.reduce_mean(loss)
|
|
|
|
|
|
def train_bit_shift(seq_length, num_iterations, print_every_n):
|
|
|
|
optimizer = tf.keras.optimizers.Adam(1e-3)
|
|
|
|
model = TrXLNet(
|
|
observation_space=Box(low=0, high=1, shape=(1,), dtype=np.int32),
|
|
action_space=Discrete(2),
|
|
num_outputs=2,
|
|
model_config={"max_seq_len": seq_length},
|
|
name="trxl",
|
|
num_transformer_units=1,
|
|
attention_dim=10,
|
|
num_heads=5,
|
|
head_dim=20,
|
|
position_wise_mlp_dim=20,
|
|
)
|
|
|
|
shift = 10
|
|
train_batch = 10
|
|
test_batch = 100
|
|
data_gen = bit_shift_generator(seq_length, shift=shift, batch_size=train_batch)
|
|
test_gen = bit_shift_generator(seq_length, shift=shift, batch_size=test_batch)
|
|
|
|
@tf.function
|
|
def update_step(inputs, targets):
|
|
model_out = model(
|
|
{"obs": inputs},
|
|
state=[tf.reshape(inputs, [-1, seq_length, 1])],
|
|
seq_lens=np.full(shape=(train_batch,), fill_value=seq_length),
|
|
)
|
|
optimizer.minimize(
|
|
lambda: train_loss(targets, model_out), lambda: model.trainable_variables
|
|
)
|
|
|
|
for i, (inputs, targets) in zip(range(num_iterations), data_gen):
|
|
inputs_in = np.reshape(inputs, [-1, 1])
|
|
targets_in = np.reshape(targets, [-1])
|
|
update_step(tf.convert_to_tensor(inputs_in), tf.convert_to_tensor(targets_in))
|
|
|
|
if i % print_every_n == 0:
|
|
test_inputs, test_targets = next(test_gen)
|
|
print(i, train_loss(test_targets, model(test_inputs)))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
tf.enable_eager_execution()
|
|
train_bit_shift(
|
|
seq_length=20,
|
|
num_iterations=2000,
|
|
print_every_n=200,
|
|
)
|