ray/rllib/models/tf/recurrent_net.py
Balaji Veeramani 7f1bacc7dc
[CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes.
2022-01-29 18:41:57 -08:00

457 lines
17 KiB
Python

import numpy as np
import gym
from gym.spaces import Box, Discrete, MultiDiscrete
import logging
import tree # pip install dm_tree
from typing import Dict, List, Optional, Type
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
from ray.rllib.policy.rnn_sequencing import add_time_dimension
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.view_requirement import ViewRequirement
from ray.rllib.utils.annotations import override, DeveloperAPI
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.spaces.space_utils import get_base_struct_from_space
from ray.rllib.utils.tf_utils import flatten_inputs_to_1d_tensor, one_hot
from ray.rllib.utils.typing import ModelConfigDict, TensorType
tf1, tf, tfv = try_import_tf()
logger = logging.getLogger(__name__)
@DeveloperAPI
class RecurrentNetwork(TFModelV2):
"""Helper class to simplify implementing RNN models with TFModelV2.
Instead of implementing forward(), you can implement forward_rnn() which
takes batches with the time dimension added already.
Here is an example implementation for a subclass
``MyRNNClass(RecurrentNetwork)``::
def __init__(self, *args, **kwargs):
super(MyModelClass, self).__init__(*args, **kwargs)
cell_size = 256
# Define input layers
input_layer = tf.keras.layers.Input(
shape=(None, obs_space.shape[0]))
state_in_h = tf.keras.layers.Input(shape=(256, ))
state_in_c = tf.keras.layers.Input(shape=(256, ))
seq_in = tf.keras.layers.Input(shape=(), dtype=tf.int32)
# Send to LSTM cell
lstm_out, state_h, state_c = tf.keras.layers.LSTM(
cell_size, return_sequences=True, return_state=True,
name="lstm")(
inputs=input_layer,
mask=tf.sequence_mask(seq_in),
initial_state=[state_in_h, state_in_c])
output_layer = tf.keras.layers.Dense(...)(lstm_out)
# Create the RNN model
self.rnn_model = tf.keras.Model(
inputs=[input_layer, seq_in, state_in_h, state_in_c],
outputs=[output_layer, state_h, state_c])
self.rnn_model.summary()
"""
@override(ModelV2)
def forward(
self,
input_dict: Dict[str, TensorType],
state: List[TensorType],
seq_lens: TensorType,
) -> (TensorType, List[TensorType]):
"""Adds time dimension to batch before sending inputs to forward_rnn().
You should implement forward_rnn() in your subclass."""
assert seq_lens is not None
padded_inputs = input_dict["obs_flat"]
max_seq_len = tf.shape(padded_inputs)[0] // tf.shape(seq_lens)[0]
output, new_state = self.forward_rnn(
add_time_dimension(padded_inputs, max_seq_len=max_seq_len, framework="tf"),
state,
seq_lens,
)
return tf.reshape(output, [-1, self.num_outputs]), new_state
def forward_rnn(
self, inputs: TensorType, state: List[TensorType], seq_lens: TensorType
) -> (TensorType, List[TensorType]):
"""Call the model with the given input tensors and state.
Args:
inputs (dict): observation tensor with shape [B, T, obs_size].
state (list): list of state tensors, each with shape [B, T, size].
seq_lens (Tensor): 1d tensor holding input sequence lengths.
Returns:
(outputs, new_state): The model output tensor of shape
[B, T, num_outputs] and the list of new state tensors each with
shape [B, size].
Sample implementation for the ``MyRNNClass`` example::
def forward_rnn(self, inputs, state, seq_lens):
model_out, h, c = self.rnn_model([inputs, seq_lens] + state)
return model_out, [h, c]
"""
raise NotImplementedError("You must implement this for a RNN model")
def get_initial_state(self) -> List[TensorType]:
"""Get the initial recurrent state values for the model.
Returns:
list of np.array objects, if any
Sample implementation for the ``MyRNNClass`` example::
def get_initial_state(self):
return [
np.zeros(self.cell_size, np.float32),
np.zeros(self.cell_size, np.float32),
]
"""
raise NotImplementedError("You must implement this for a RNN model")
class LSTMWrapper(RecurrentNetwork):
"""An LSTM wrapper serving as an interface for ModelV2s that set use_lstm."""
def __init__(
self,
obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
num_outputs: int,
model_config: ModelConfigDict,
name: str,
):
super(LSTMWrapper, self).__init__(
obs_space, action_space, None, model_config, name
)
# At this point, self.num_outputs is the number of nodes coming
# from the wrapped (underlying) model. In other words, self.num_outputs
# is the input size for the LSTM layer.
# If None, set it to the observation space.
if self.num_outputs is None:
self.num_outputs = int(np.product(self.obs_space.shape))
self.cell_size = model_config["lstm_cell_size"]
self.use_prev_action = model_config["lstm_use_prev_action"]
self.use_prev_reward = model_config["lstm_use_prev_reward"]
self.action_space_struct = get_base_struct_from_space(self.action_space)
self.action_dim = 0
for space in tree.flatten(self.action_space_struct):
if isinstance(space, Discrete):
self.action_dim += space.n
elif isinstance(space, MultiDiscrete):
self.action_dim += np.sum(space.nvec)
elif space.shape is not None:
self.action_dim += int(np.product(space.shape))
else:
self.action_dim += int(len(space))
# Add prev-action/reward nodes to input to LSTM.
if self.use_prev_action:
self.num_outputs += self.action_dim
if self.use_prev_reward:
self.num_outputs += 1
# Define input layers.
input_layer = tf.keras.layers.Input(
shape=(None, self.num_outputs), name="inputs"
)
# Set self.num_outputs to the number of output nodes desired by the
# caller of this constructor.
self.num_outputs = num_outputs
state_in_h = tf.keras.layers.Input(shape=(self.cell_size,), name="h")
state_in_c = tf.keras.layers.Input(shape=(self.cell_size,), name="c")
seq_in = tf.keras.layers.Input(shape=(), name="seq_in", dtype=tf.int32)
# Preprocess observation with a hidden layer and send to LSTM cell
lstm_out, state_h, state_c = tf.keras.layers.LSTM(
self.cell_size, return_sequences=True, return_state=True, name="lstm"
)(
inputs=input_layer,
mask=tf.sequence_mask(seq_in),
initial_state=[state_in_h, state_in_c],
)
# Postprocess LSTM output with another hidden layer and compute values
logits = tf.keras.layers.Dense(
self.num_outputs, activation=tf.keras.activations.linear, name="logits"
)(lstm_out)
values = tf.keras.layers.Dense(1, activation=None, name="values")(lstm_out)
# Create the RNN model
self._rnn_model = tf.keras.Model(
inputs=[input_layer, seq_in, state_in_h, state_in_c],
outputs=[logits, values, state_h, state_c],
)
# Print out model summary in INFO logging mode.
if logger.isEnabledFor(logging.INFO):
self._rnn_model.summary()
# Add prev-a/r to this model's view, if required.
if model_config["lstm_use_prev_action"]:
self.view_requirements[SampleBatch.PREV_ACTIONS] = ViewRequirement(
SampleBatch.ACTIONS, space=self.action_space, shift=-1
)
if model_config["lstm_use_prev_reward"]:
self.view_requirements[SampleBatch.PREV_REWARDS] = ViewRequirement(
SampleBatch.REWARDS, shift=-1
)
@override(RecurrentNetwork)
def forward(
self,
input_dict: Dict[str, TensorType],
state: List[TensorType],
seq_lens: TensorType,
) -> (TensorType, List[TensorType]):
assert seq_lens is not None
# Push obs through "unwrapped" net's `forward()` first.
wrapped_out, _ = self._wrapped_forward(input_dict, [], None)
# Concat. prev-action/reward if required.
prev_a_r = []
# Prev actions.
if self.model_config["lstm_use_prev_action"]:
prev_a = input_dict[SampleBatch.PREV_ACTIONS]
# If actions are not processed yet (in their original form as
# have been sent to environment):
# Flatten/one-hot into 1D array.
if self.model_config["_disable_action_flattening"]:
prev_a_r.append(
flatten_inputs_to_1d_tensor(
prev_a,
spaces_struct=self.action_space_struct,
time_axis=False,
)
)
# If actions are already flattened (but not one-hot'd yet!),
# one-hot discrete/multi-discrete actions here.
else:
if isinstance(self.action_space, (Discrete, MultiDiscrete)):
prev_a = one_hot(prev_a, self.action_space)
prev_a_r.append(
tf.reshape(tf.cast(prev_a, tf.float32), [-1, self.action_dim])
)
# Prev rewards.
if self.model_config["lstm_use_prev_reward"]:
prev_a_r.append(
tf.reshape(
tf.cast(input_dict[SampleBatch.PREV_REWARDS], tf.float32), [-1, 1]
)
)
# Concat prev. actions + rewards to the "main" input.
if prev_a_r:
wrapped_out = tf.concat([wrapped_out] + prev_a_r, axis=1)
# Push everything through our LSTM.
input_dict["obs_flat"] = wrapped_out
return super().forward(input_dict, state, seq_lens)
@override(RecurrentNetwork)
def forward_rnn(
self, inputs: TensorType, state: List[TensorType], seq_lens: TensorType
) -> (TensorType, List[TensorType]):
model_out, self._value_out, h, c = self._rnn_model([inputs, seq_lens] + state)
return model_out, [h, c]
@override(ModelV2)
def get_initial_state(self) -> List[np.ndarray]:
return [
np.zeros(self.cell_size, np.float32),
np.zeros(self.cell_size, np.float32),
]
@override(ModelV2)
def value_function(self) -> TensorType:
return tf.reshape(self._value_out, [-1])
class Keras_LSTMWrapper(tf.keras.Model if tf else object):
"""A tf keras auto-LSTM wrapper used when `use_lstm`=True."""
def __init__(
self,
input_space: gym.spaces.Space,
action_space: gym.spaces.Space,
num_outputs: Optional[int] = None,
*,
name: str,
wrapped_cls: Type["tf.keras.Model"],
max_seq_len: int = 20,
lstm_cell_size: int = 256,
lstm_use_prev_action: bool = False,
lstm_use_prev_reward: bool = False,
**kwargs,
):
super().__init__(name=name)
self.wrapped_keras_model = wrapped_cls(
input_space, action_space, None, name="wrapped_" + name, **kwargs
)
self.action_space = action_space
self.max_seq_len = max_seq_len
# Guess the number of outputs for the wrapped model by looking
# at its first output's shape.
# This will be the input size for the LSTM layer (plus
# maybe prev-actions/rewards).
# If no layers in the wrapped model, set it to the
# observation space.
if self.wrapped_keras_model.layers:
assert self.wrapped_keras_model.layers[-1].outputs
assert len(self.wrapped_keras_model.layers[-1].outputs[0].shape) == 2
wrapped_num_outputs = int(
self.wrapped_keras_model.layers[-1].outputs[0].shape[1]
)
else:
wrapped_num_outputs = int(np.product(self.obs_space.shape))
self.lstm_cell_size = lstm_cell_size
self.lstm_use_prev_action = lstm_use_prev_action
self.lstm_use_prev_reward = lstm_use_prev_reward
if isinstance(self.action_space, Discrete):
self.action_dim = self.action_space.n
elif isinstance(self.action_space, MultiDiscrete):
self.action_dim = np.sum(self.action_space.nvec)
elif self.action_space.shape is not None:
self.action_dim = int(np.product(self.action_space.shape))
else:
self.action_dim = int(len(self.action_space))
# Add prev-action/reward nodes to input to LSTM.
if self.lstm_use_prev_action:
wrapped_num_outputs += self.action_dim
if self.lstm_use_prev_reward:
wrapped_num_outputs += 1
# Define input layers.
input_layer = tf.keras.layers.Input(
shape=(None, wrapped_num_outputs), name="inputs"
)
state_in_h = tf.keras.layers.Input(shape=(self.lstm_cell_size,), name="h")
state_in_c = tf.keras.layers.Input(shape=(self.lstm_cell_size,), name="c")
seq_in = tf.keras.layers.Input(shape=(), name="seq_in", dtype=tf.int32)
# Preprocess observation with a hidden layer and send to LSTM cell
lstm_out, state_h, state_c = tf.keras.layers.LSTM(
self.lstm_cell_size, return_sequences=True, return_state=True, name="lstm"
)(
inputs=input_layer,
mask=tf.sequence_mask(seq_in),
initial_state=[state_in_h, state_in_c],
)
# Postprocess LSTM output with another hidden layer
# if num_outputs not None.
if num_outputs:
logits = tf.keras.layers.Dense(
num_outputs, activation=tf.keras.activations.linear, name="logits"
)(lstm_out)
else:
logits = lstm_out
# Compute values.
values = tf.keras.layers.Dense(1, activation=None, name="values")(lstm_out)
# Create the RNN model
self._rnn_model = tf.keras.Model(
inputs=[input_layer, seq_in, state_in_h, state_in_c],
outputs=[logits, values, state_h, state_c],
)
# Use view-requirements of wrapped model and add own
# requirements.
self.view_requirements = getattr(
self.wrapped_keras_model,
"view_requirements",
{SampleBatch.OBS: ViewRequirement(space=input_space)},
)
# Add prev-a/r to this model's view, if required.
if self.lstm_use_prev_action:
self.view_requirements[SampleBatch.PREV_ACTIONS] = ViewRequirement(
SampleBatch.ACTIONS, space=self.action_space, shift=-1
)
if self.lstm_use_prev_reward:
self.view_requirements[SampleBatch.PREV_REWARDS] = ViewRequirement(
SampleBatch.REWARDS, shift=-1
)
# Internal states view requirements.
for i in range(2):
space = Box(-1.0, 1.0, shape=(self.lstm_cell_size,))
self.view_requirements["state_in_{}".format(i)] = ViewRequirement(
"state_out_{}".format(i),
shift=-1,
used_for_compute_actions=True,
batch_repeat_value=max_seq_len,
space=space,
)
self.view_requirements["state_out_{}".format(i)] = ViewRequirement(
space=space, used_for_training=True
)
def call(
self, input_dict: SampleBatch
) -> (TensorType, List[TensorType], Dict[str, TensorType]):
assert input_dict.get(SampleBatch.SEQ_LENS) is not None
# Push obs through underlying (wrapped) model first.
wrapped_out, _, _ = self.wrapped_keras_model(input_dict)
# Concat. prev-action/reward if required.
prev_a_r = []
if self.lstm_use_prev_action:
prev_a = input_dict[SampleBatch.PREV_ACTIONS]
if isinstance(self.action_space, (Discrete, MultiDiscrete)):
prev_a = one_hot(prev_a, self.action_space)
prev_a_r.append(
tf.reshape(tf.cast(prev_a, tf.float32), [-1, self.action_dim])
)
if self.lstm_use_prev_reward:
prev_a_r.append(
tf.reshape(
tf.cast(input_dict[SampleBatch.PREV_REWARDS], tf.float32), [-1, 1]
)
)
if prev_a_r:
wrapped_out = tf.concat([wrapped_out] + prev_a_r, axis=1)
max_seq_len = (
tf.shape(wrapped_out)[0] // tf.shape(input_dict[SampleBatch.SEQ_LENS])[0]
)
wrapped_out_plus_time_dim = add_time_dimension(
wrapped_out, max_seq_len=max_seq_len, framework="tf"
)
model_out, value_out, h, c = self._rnn_model(
[
wrapped_out_plus_time_dim,
input_dict[SampleBatch.SEQ_LENS],
input_dict["state_in_0"],
input_dict["state_in_1"],
]
)
model_out_no_time_dim = tf.reshape(
model_out, tf.concat([[-1], tf.shape(model_out)[2:]], axis=0)
)
return (
model_out_no_time_dim,
[h, c],
{SampleBatch.VF_PREDS: tf.reshape(value_out, [-1])},
)