ray/rllib/models/torch/fcnet.py
Balaji Veeramani 7f1bacc7dc
[CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes.
2022-01-29 18:41:57 -08:00

160 lines
5.8 KiB
Python

import logging
import numpy as np
import gym
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.models.torch.misc import SlimFC, AppendBiasLayer, normc_initializer
from ray.rllib.utils.annotations import override
from ray.rllib.utils.framework import try_import_torch
from ray.rllib.utils.typing import Dict, TensorType, List, ModelConfigDict
torch, nn = try_import_torch()
logger = logging.getLogger(__name__)
class FullyConnectedNetwork(TorchModelV2, nn.Module):
"""Generic fully connected network."""
def __init__(
self,
obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
num_outputs: int,
model_config: ModelConfigDict,
name: str,
):
TorchModelV2.__init__(
self, obs_space, action_space, num_outputs, model_config, name
)
nn.Module.__init__(self)
hiddens = list(model_config.get("fcnet_hiddens", [])) + list(
model_config.get("post_fcnet_hiddens", [])
)
activation = model_config.get("fcnet_activation")
if not model_config.get("fcnet_hiddens", []):
activation = model_config.get("post_fcnet_activation")
no_final_linear = model_config.get("no_final_linear")
self.vf_share_layers = model_config.get("vf_share_layers")
self.free_log_std = model_config.get("free_log_std")
# Generate free-floating bias variables for the second half of
# the outputs.
if self.free_log_std:
assert num_outputs % 2 == 0, (
"num_outputs must be divisible by two",
num_outputs,
)
num_outputs = num_outputs // 2
layers = []
prev_layer_size = int(np.product(obs_space.shape))
self._logits = None
# Create layers 0 to second-last.
for size in hiddens[:-1]:
layers.append(
SlimFC(
in_size=prev_layer_size,
out_size=size,
initializer=normc_initializer(1.0),
activation_fn=activation,
)
)
prev_layer_size = size
# The last layer is adjusted to be of size num_outputs, but it's a
# layer with activation.
if no_final_linear and num_outputs:
layers.append(
SlimFC(
in_size=prev_layer_size,
out_size=num_outputs,
initializer=normc_initializer(1.0),
activation_fn=activation,
)
)
prev_layer_size = num_outputs
# Finish the layers with the provided sizes (`hiddens`), plus -
# iff num_outputs > 0 - a last linear layer of size num_outputs.
else:
if len(hiddens) > 0:
layers.append(
SlimFC(
in_size=prev_layer_size,
out_size=hiddens[-1],
initializer=normc_initializer(1.0),
activation_fn=activation,
)
)
prev_layer_size = hiddens[-1]
if num_outputs:
self._logits = SlimFC(
in_size=prev_layer_size,
out_size=num_outputs,
initializer=normc_initializer(0.01),
activation_fn=None,
)
else:
self.num_outputs = ([int(np.product(obs_space.shape))] + hiddens[-1:])[
-1
]
# Layer to add the log std vars to the state-dependent means.
if self.free_log_std and self._logits:
self._append_free_log_std = AppendBiasLayer(num_outputs)
self._hidden_layers = nn.Sequential(*layers)
self._value_branch_separate = None
if not self.vf_share_layers:
# Build a parallel set of hidden layers for the value net.
prev_vf_layer_size = int(np.product(obs_space.shape))
vf_layers = []
for size in hiddens:
vf_layers.append(
SlimFC(
in_size=prev_vf_layer_size,
out_size=size,
activation_fn=activation,
initializer=normc_initializer(1.0),
)
)
prev_vf_layer_size = size
self._value_branch_separate = nn.Sequential(*vf_layers)
self._value_branch = SlimFC(
in_size=prev_layer_size,
out_size=1,
initializer=normc_initializer(0.01),
activation_fn=None,
)
# Holds the current "base" output (before logits layer).
self._features = None
# Holds the last input, in case value branch is separate.
self._last_flat_in = None
@override(TorchModelV2)
def forward(
self,
input_dict: Dict[str, TensorType],
state: List[TensorType],
seq_lens: TensorType,
) -> (TensorType, List[TensorType]):
obs = input_dict["obs_flat"].float()
self._last_flat_in = obs.reshape(obs.shape[0], -1)
self._features = self._hidden_layers(self._last_flat_in)
logits = self._logits(self._features) if self._logits else self._features
if self.free_log_std:
logits = self._append_free_log_std(logits)
return logits, state
@override(TorchModelV2)
def value_function(self) -> TensorType:
assert self._features is not None, "must call forward() first"
if self._value_branch_separate:
return self._value_branch(
self._value_branch_separate(self._last_flat_in)
).squeeze(1)
else:
return self._value_branch(self._features).squeeze(1)