ray/rllib/evaluation/tests/test_agent_collector.py
2022-07-26 21:52:14 -07:00

346 lines
13 KiB
Python

import gym
import numpy as np
import unittest
import ray
import math
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.view_requirement import ViewRequirement
from ray.rllib.utils.test_utils import check
from ray.rllib.evaluation.collectors.agent_collector import AgentCollector
class TestAgentCollector(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init()
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def _simulate_env_steps(self, ac, n_steps=1):
obses = []
obses.append(np.random.rand(4))
ac.add_init_obs(
episode_id=0,
agent_index=1,
env_id=0,
t=-1,
init_obs=obses[-1],
)
for t in range(n_steps):
obses.append(np.random.rand(4))
ac.add_action_reward_next_obs(
{SampleBatch.NEXT_OBS: obses[-1], SampleBatch.T: t}
)
return obses
def test_inference_vs_training_batch(self):
"""Test whether build_for_inference and build_for_training return the same
batch when they have to."""
obs_space = gym.spaces.Box(-np.ones(4), np.ones(4))
ctx_len = 5
view_reqs = {
SampleBatch.T: ViewRequirement(SampleBatch.T),
SampleBatch.OBS: ViewRequirement("obs", space=obs_space),
# include the current obs in the context
"prev_obses": ViewRequirement("obs", shift=f"-{ctx_len - 1}:0"),
}
n_steps = 100
obses = np.random.rand(n_steps, 4)
# list to store the last ctx_len obses
for training_mode in [False, True]:
ac = AgentCollector(
view_reqs=view_reqs,
is_policy_recurrent=True,
max_seq_len=20, # default max_seq_len in lstm
is_training=training_mode,
)
obses_ctx = []
for t, obs in enumerate(obses):
if t == 0:
# e.g. state = env.reset()
ac.add_init_obs(
episode_id=0,
agent_index=1,
env_id=0,
t=-1,
init_obs=obs,
)
obses_ctx.extend([obs for _ in range(ctx_len)])
else:
# e.g. next_state = env.step()
ac.add_action_reward_next_obs(
{SampleBatch.NEXT_OBS: obs, SampleBatch.T: t - 1}
)
# pop from front and add to the end
obses_ctx.pop(0)
obses_ctx.append(obs)
eval_batch = ac.build_for_inference()
# batch size should always be one
self.assertEqual(eval_batch.count, 1)
# shape of prev_obses should be (1, ctx_len, 4)
self.assertEqual(eval_batch["prev_obses"].shape, (1, ctx_len, 4))
# obs should always be the last time step obs added
check(eval_batch["obs"], obs[None])
# prev_obs should always be the last ctx_len time steps obs added
# (excluding the current time step)
check(eval_batch["prev_obses"], np.stack(obses_ctx, 0)[None])
# in inference mode the buffer length at the end should be just ctx_len
if not training_mode:
check(len(ac.buffers[SampleBatch.OBS][0]), ctx_len)
else:
# otherwise it should be n_steps + ctx_len - 1
check(len(ac.buffers[SampleBatch.OBS][0]), n_steps + ctx_len - 1)
self.assertTrue(ac.training, "Training mode should be True.")
train_batch = ac.build_for_training(view_reqs)
self.assertEqual(
len(train_batch["seq_lens"]), math.ceil(n_steps / ac.max_seq_len)
)
self.assertEqual(train_batch["prev_obses"].shape, (n_steps - 1, ctx_len, 4))
self.assertEqual(train_batch[SampleBatch.OBS].shape, (n_steps - 1, 4))
def test_inference_respects_causality(self):
obs_space = gym.spaces.Box(-np.ones(4), np.ones(4))
view_reqs = {
SampleBatch.T: ViewRequirement(SampleBatch.T),
SampleBatch.OBS: ViewRequirement("obs", space=obs_space),
"future_obs": ViewRequirement("obs", shift=1),
"past_obs": ViewRequirement("obs", shift=-1),
}
ac = AgentCollector(view_reqs=view_reqs, is_policy_recurrent=True)
self._simulate_env_steps(ac, n_steps=10)
# build_for_train should return all keys
train_batch = ac.build_for_training(view_reqs)
self.assertTrue(all(key in train_batch.keys() for key in view_reqs.keys()))
# should error out since future_obs has used_for_compute_actions=True but
# depends on future
with self.assertRaises(ValueError):
ac.build_for_inference()
view_reqs["future_obs"] = ViewRequirement(
"obs", shift=1, used_for_compute_actions=False
)
# since future_obs is shoulld not be used in inference, it should not be in the
# batch
eval_batch = ac.build_for_inference()
self.assertTrue(
all(
k in eval_batch.keys()
for k, vr in view_reqs.items()
if vr.used_for_compute_actions
)
)
def test_slice_with_repeat_value_1(self):
obs_space = gym.spaces.Box(-np.ones(4), np.ones(4))
ctx_len = 5
view_reqs = {
SampleBatch.T: ViewRequirement(SampleBatch.T),
SampleBatch.OBS: ViewRequirement("obs", space=obs_space),
"prev_obses": ViewRequirement("obs", shift=f"-{ctx_len}:-1"),
}
ac = AgentCollector(view_reqs=view_reqs, is_policy_recurrent=True)
obses = self._simulate_env_steps(ac, n_steps=10)
sample_batch = ac.build_for_training(view_reqs)
# exclude the last one since these are the next_obses
expected_obses = np.stack(obses[:-1])
check(expected_obses, sample_batch[SampleBatch.OBS])
for t in range(10):
# no padding
if t > ctx_len - 1:
check(sample_batch["prev_obses"][t], expected_obses[t - ctx_len : t])
else:
# with padding
for offset in range(ctx_len):
if offset < ctx_len - t:
# check the padding
check(sample_batch["prev_obses"][t, offset], expected_obses[0])
else:
# check the rest of the data
check(
sample_batch["prev_obses"][t, offset:],
expected_obses[t - ctx_len + offset : t],
)
break
def test_slice_with_repeat_value_larger_1(self):
obs_space = gym.spaces.Box(-np.ones(4), np.ones(4))
ctx_len = 5
view_reqs = {
SampleBatch.T: ViewRequirement(SampleBatch.T),
SampleBatch.OBS: ViewRequirement("obs", space=obs_space),
"prev_obses": ViewRequirement(
"obs", shift=f"-{ctx_len}:-1", batch_repeat_value=ctx_len
),
}
ac = AgentCollector(view_reqs=view_reqs, is_policy_recurrent=True)
obses = self._simulate_env_steps(ac, n_steps=10)
sample_batch = ac.build_for_training(view_reqs)
# exclude the last one since these are the next_obses
expected_obses = np.stack(obses[:-1])
check(expected_obses, sample_batch[SampleBatch.OBS])
self.assertEqual(sample_batch["prev_obses"].shape, (2, ctx_len, 4))
# the first prev_obses should be just the first obses repeated ctx_len times
check(sample_batch["prev_obses"][0], np.ones((ctx_len, 1)) * expected_obses[0])
# the second prev_obses should be ctx_len slice of obses started at index 0
check(sample_batch["prev_obses"][1], expected_obses[:ctx_len])
def test_shift_by_one_with_repeat_value_larger_1(self):
obs_space = gym.spaces.Box(-np.ones(4), np.ones(4))
ctx_len = 5
view_reqs = {
SampleBatch.T: ViewRequirement(SampleBatch.T),
SampleBatch.OBS: ViewRequirement("obs", space=obs_space),
"prev_obses": ViewRequirement("obs", shift=-1, batch_repeat_value=ctx_len),
}
ac = AgentCollector(view_reqs=view_reqs, is_policy_recurrent=True)
obses = self._simulate_env_steps(ac, n_steps=10)
sample_batch = ac.build_for_training(view_reqs)
# exclude the last one since these are the next_obses
expected_obses = np.stack(obses[:-1])
self.assertEqual(sample_batch["prev_obses"].shape, (2, 4))
# should be the same as padding
check(sample_batch["prev_obses"][0], expected_obses[0])
# should be the same as index ctx_len - 1
check(sample_batch["prev_obses"][1], expected_obses[ctx_len - 1])
def test_shift_by_one_with_repeat_1(self):
obs_space = gym.spaces.Box(-np.ones(4), np.ones(4))
view_reqs = {
SampleBatch.T: ViewRequirement(SampleBatch.T),
SampleBatch.OBS: ViewRequirement("obs", space=obs_space),
"prev_obses": ViewRequirement("obs", shift=-1),
}
ac = AgentCollector(view_reqs=view_reqs, is_policy_recurrent=True)
obses = self._simulate_env_steps(ac, n_steps=10)
sample_batch = ac.build_for_training(view_reqs)
# exclude the last one since these are the next_obses
expected_obses = np.stack(obses[:-1])
# check the padding
check(sample_batch["prev_obses"][0], expected_obses[0])
# check the data
check(sample_batch["prev_obses"][1:], expected_obses[:-1])
def test_shift_positive_one_with_repeat_1(self):
obs_space = gym.spaces.Box(-np.ones(4), np.ones(4))
view_reqs = {
SampleBatch.T: ViewRequirement(SampleBatch.T),
SampleBatch.OBS: ViewRequirement("obs", space=obs_space),
SampleBatch.NEXT_OBS: ViewRequirement("obs", shift=1),
}
ac = AgentCollector(view_reqs=view_reqs, is_policy_recurrent=True)
obses = self._simulate_env_steps(ac, n_steps=10)
sample_batch = ac.build_for_training(view_reqs)
check(sample_batch[SampleBatch.NEXT_OBS], np.stack(obses)[1:])
def test_shift_positive_one_with_repeat_larger_1(self):
obs_space = gym.spaces.Box(-np.ones(4), np.ones(4))
ctx_len = 5
view_reqs = {
SampleBatch.T: ViewRequirement(SampleBatch.T),
SampleBatch.OBS: ViewRequirement("obs", space=obs_space),
SampleBatch.NEXT_OBS: ViewRequirement(
"obs", shift=1, batch_repeat_value=ctx_len
),
}
ac = AgentCollector(view_reqs=view_reqs, is_policy_recurrent=True)
obses = self._simulate_env_steps(ac, n_steps=10)
sample_batch = ac.build_for_training(view_reqs)
expected_obses = np.stack(obses)
self.assertEqual(sample_batch[SampleBatch.NEXT_OBS].shape, (2, 4))
# next_obs at index = 0 should be equal to obs at index = 1
check(sample_batch[SampleBatch.NEXT_OBS][0], expected_obses[1])
# next_obs at index = 1 should be equal to next_obs at index = ctx_len - 1
# which is obs at index = ctx_len
check(sample_batch[SampleBatch.NEXT_OBS][1], expected_obses[ctx_len + 1])
def test_slice_with_array(self):
obs_space = gym.spaces.Box(-np.ones(4), np.ones(4))
view_reqs = {
SampleBatch.T: ViewRequirement(SampleBatch.T),
SampleBatch.OBS: ViewRequirement("obs", space=obs_space),
"prev_obses": ViewRequirement("obs", shift=[-3, -1]),
}
ac = AgentCollector(view_reqs=view_reqs, is_policy_recurrent=True)
obses = self._simulate_env_steps(ac, n_steps=10)
sample_batch = ac.build_for_training(view_reqs)
# exclude the last one since these are the next_obses
expected_obses = np.stack(obses[:-1])
self.assertEqual(sample_batch["prev_obses"].shape, (10, 2, 4))
# check if the last time step is correct
check(sample_batch["prev_obses"][-1], expected_obses[-4:-1:2])
# check if the padding in the beginning is correct
check(sample_batch["prev_obses"][0], np.ones((2, 1)) * expected_obses[0])
def test_view_requirement_with_shfit_step(self):
obs_space = gym.spaces.Box(-np.ones(4), np.ones(4))
view_reqs = {
SampleBatch.T: ViewRequirement(SampleBatch.T),
SampleBatch.OBS: ViewRequirement("obs", space=obs_space),
"prev_obses": ViewRequirement("obs", shift="-5:-1:2"), # [-5, -3, -1]
}
ac = AgentCollector(view_reqs=view_reqs, is_policy_recurrent=True)
obses = self._simulate_env_steps(ac, n_steps=10)
sample_batch = ac.build_for_training(view_reqs)
# exclude the last one since these are the next_obses
expected_obses = np.stack(obses[:-1])
self.assertEqual(sample_batch["prev_obses"].shape, (10, 3, 4))
# check if the last time step is correct
check(sample_batch["prev_obses"][-1], expected_obses[-6:-1:2])
# check if the padding in the beginning is correct
check(sample_batch["prev_obses"][0], np.ones((3, 1)) * expected_obses[0])
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))