mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
120 lines
3.4 KiB
Python
120 lines
3.4 KiB
Python
"""
|
|
Example showing how you can use your trained policy for inference
|
|
(computing actions) in an environment.
|
|
|
|
Includes options for LSTM-based models (--use-lstm), attention-net models
|
|
(--use-attention), and plain (non-recurrent) models.
|
|
"""
|
|
import argparse
|
|
import gym
|
|
import os
|
|
|
|
import ray
|
|
from ray import tune
|
|
from ray.rllib.agents.registry import get_trainer_class
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--run", type=str, default="PPO", help="The RLlib-registered algorithm to use."
|
|
)
|
|
parser.add_argument("--num-cpus", type=int, default=0)
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.",
|
|
)
|
|
parser.add_argument("--eager-tracing", action="store_true")
|
|
parser.add_argument(
|
|
"--stop-iters",
|
|
type=int,
|
|
default=200,
|
|
help="Number of iterations to train before we do inference.",
|
|
)
|
|
parser.add_argument(
|
|
"--stop-timesteps",
|
|
type=int,
|
|
default=100000,
|
|
help="Number of timesteps to train before we do inference.",
|
|
)
|
|
parser.add_argument(
|
|
"--stop-reward",
|
|
type=float,
|
|
default=150.0,
|
|
help="Reward at which we stop training before we do inference.",
|
|
)
|
|
parser.add_argument(
|
|
"--explore-during-inference",
|
|
action="store_true",
|
|
help="Whether the trained policy should use exploration during action "
|
|
"inference.",
|
|
)
|
|
parser.add_argument(
|
|
"--num-episodes-during-inference",
|
|
type=int,
|
|
default=10,
|
|
help="Number of episodes to do inference over after training.",
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
|
|
ray.init(num_cpus=args.num_cpus or None)
|
|
|
|
config = {
|
|
"env": "FrozenLake-v1",
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
"framework": args.framework,
|
|
# Run with tracing enabled for tfe/tf2?
|
|
"eager_tracing": args.eager_tracing,
|
|
}
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"episode_reward_mean": args.stop_reward,
|
|
}
|
|
|
|
print("Training policy until desired reward/timesteps/iterations. ...")
|
|
results = tune.run(
|
|
args.run,
|
|
config=config,
|
|
stop=stop,
|
|
verbose=2,
|
|
checkpoint_freq=1,
|
|
checkpoint_at_end=True,
|
|
)
|
|
|
|
print("Training completed. Restoring new Trainer for action inference.")
|
|
# Get the last checkpoint from the above training run.
|
|
checkpoint = results.get_last_checkpoint()
|
|
# Create new Trainer and restore its state from the last checkpoint.
|
|
trainer = get_trainer_class(args.run)(config=config)
|
|
trainer.restore(checkpoint)
|
|
|
|
# Create the env to do inference in.
|
|
env = gym.make("FrozenLake-v1")
|
|
obs = env.reset()
|
|
|
|
num_episodes = 0
|
|
episode_reward = 0.0
|
|
|
|
while num_episodes < args.num_episodes_during_inference:
|
|
# Compute an action (`a`).
|
|
a = trainer.compute_single_action(
|
|
observation=obs,
|
|
explore=args.explore_during_inference,
|
|
policy_id="default_policy", # <- default value
|
|
)
|
|
# Send the computed action `a` to the env.
|
|
obs, reward, done, _ = env.step(a)
|
|
episode_reward += reward
|
|
# Is the episode `done`? -> Reset.
|
|
if done:
|
|
print(f"Episode done: Total reward = {episode_reward}")
|
|
obs = env.reset()
|
|
num_episodes += 1
|
|
episode_reward = 0.0
|
|
|
|
ray.shutdown()
|