mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
47 lines
1.7 KiB
Python
47 lines
1.7 KiB
Python
from gym.spaces import Space
|
|
from typing import Optional
|
|
|
|
from ray.rllib.utils.exploration.gaussian_noise import GaussianNoise
|
|
from ray.rllib.utils.schedules import ConstantSchedule
|
|
|
|
|
|
class PerWorkerGaussianNoise(GaussianNoise):
|
|
"""A per-worker Gaussian noise class for distributed algorithms.
|
|
|
|
Sets the `scale` schedules of individual workers to a constant:
|
|
0.4 ^ (1 + [worker-index] / float([num-workers] - 1) * 7)
|
|
See Ape-X paper.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
action_space: Space,
|
|
*,
|
|
framework: Optional[str],
|
|
num_workers: Optional[int],
|
|
worker_index: Optional[int],
|
|
**kwargs
|
|
):
|
|
"""
|
|
Args:
|
|
action_space: The gym action space used by the environment.
|
|
num_workers: The overall number of workers used.
|
|
worker_index: The index of the Worker using this
|
|
Exploration.
|
|
framework: One of None, "tf", "torch".
|
|
"""
|
|
scale_schedule = None
|
|
# Use a fixed, different epsilon per worker. See: Ape-X paper.
|
|
if num_workers > 0:
|
|
if worker_index > 0:
|
|
num_workers_minus_1 = float(num_workers - 1) if num_workers > 1 else 1.0
|
|
exponent = 1 + (worker_index / num_workers_minus_1) * 7
|
|
scale_schedule = ConstantSchedule(0.4 ** exponent, framework=framework)
|
|
# Local worker should have zero exploration so that eval
|
|
# rollouts run properly.
|
|
else:
|
|
scale_schedule = ConstantSchedule(0.0, framework=framework)
|
|
|
|
super().__init__(
|
|
action_space, scale_schedule=scale_schedule, framework=framework, **kwargs
|
|
)
|