ray/release/long_running_tests/workloads/apex.py
Balaji Veeramani 7f1bacc7dc
[CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes.
2022-01-29 18:41:57 -08:00

56 lines
1.6 KiB
Python

# This workload tests running APEX
import ray
from ray.tune import run_experiments
from ray.tune.utils.release_test_util import ProgressCallback
num_redis_shards = 5
redis_max_memory = 10 ** 8
object_store_memory = 10 ** 9
num_nodes = 3
message = (
"Make sure there is enough memory on this machine to run this "
"workload. We divide the system memory by 2 to provide a buffer."
)
assert (
num_nodes * object_store_memory + num_redis_shards * redis_max_memory
< ray._private.utils.get_system_memory() / 2
), message
# Simulate a cluster on one machine.
# cluster = Cluster()
# for i in range(num_nodes):
# cluster.add_node(redis_port=6379 if i == 0 else None,
# num_redis_shards=num_redis_shards if i == 0 else None,
# num_cpus=20,
# num_gpus=0,
# resources={str(i): 2},
# object_store_memory=object_store_memory,
# redis_max_memory=redis_max_memory,
# dashboard_host="0.0.0.0")
# ray.init(address=cluster.address)
ray.init()
# Run the workload.
run_experiments(
{
"apex": {
"run": "APEX",
"env": "Pong-v0",
"config": {
"num_workers": 3,
"num_gpus": 0,
"buffer_size": 10000,
"learning_starts": 0,
"rollout_fragment_length": 1,
"train_batch_size": 1,
"min_iter_time_s": 10,
"timesteps_per_iteration": 10,
},
}
},
callbacks=[ProgressCallback()],
)