mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
33 lines
1,001 B
Python
33 lines
1,001 B
Python
from gym.envs.classic_control.pendulum import PendulumEnv
|
|
from gym.utils import EzPickle
|
|
import numpy as np
|
|
|
|
from ray.rllib.env.apis.task_settable_env import TaskSettableEnv
|
|
|
|
|
|
class PendulumMassEnv(PendulumEnv, EzPickle, TaskSettableEnv):
|
|
"""PendulumMassEnv varies the weight of the pendulum
|
|
|
|
Tasks are defined to be weight uniformly sampled between [0.5,2]
|
|
"""
|
|
|
|
def sample_tasks(self, n_tasks):
|
|
# Sample new pendulum masses (random floats between 0.5 and 2).
|
|
return np.random.uniform(low=0.5, high=2.0, size=(n_tasks,))
|
|
|
|
def set_task(self, task):
|
|
"""
|
|
Args:
|
|
task (float): Task of the meta-learning environment (here: mass of
|
|
the pendulum).
|
|
"""
|
|
# self.m is the mass property of the pendulum.
|
|
self.m = task
|
|
|
|
def get_task(self):
|
|
"""
|
|
Returns:
|
|
float: The current mass of the pendulum (self.m in the PendulumEnv
|
|
object).
|
|
"""
|
|
return self.m
|