mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
66 lines
2.1 KiB
Python
66 lines
2.1 KiB
Python
from gym.envs.mujoco.mujoco_env import MujocoEnv
|
|
from gym.utils import EzPickle
|
|
import numpy as np
|
|
|
|
from ray.rllib.env.apis.task_settable_env import TaskSettableEnv
|
|
|
|
|
|
class HalfCheetahRandDirecEnv(MujocoEnv, EzPickle, TaskSettableEnv):
|
|
"""HalfCheetah Environment with two diff tasks, moving forwards or backwards
|
|
|
|
Direction is defined as a scalar: +1.0 (forwards) or -1.0 (backwards)
|
|
"""
|
|
|
|
def __init__(self, goal_direction=None):
|
|
self.goal_direction = goal_direction if goal_direction else 1.0
|
|
MujocoEnv.__init__(self, "half_cheetah.xml", 5)
|
|
EzPickle.__init__(self, goal_direction)
|
|
|
|
def sample_tasks(self, n_tasks):
|
|
# For fwd/bwd env, goal direc is backwards if - 1.0, forwards if + 1.0
|
|
return np.random.choice((-1.0, 1.0), (n_tasks,))
|
|
|
|
def set_task(self, task):
|
|
"""
|
|
Args:
|
|
task: task of the meta-learning environment
|
|
"""
|
|
self.goal_direction = task
|
|
|
|
def get_task(self):
|
|
"""
|
|
Returns:
|
|
task: task of the meta-learning environment
|
|
"""
|
|
return self.goal_direction
|
|
|
|
def step(self, action):
|
|
xposbefore = self.sim.data.qpos[0]
|
|
self.do_simulation(action, self.frame_skip)
|
|
xposafter = self.sim.data.qpos[0]
|
|
ob = self._get_obs()
|
|
reward_ctrl = -0.5 * 0.1 * np.square(action).sum()
|
|
reward_run = self.goal_direction * (xposafter - xposbefore) / self.dt
|
|
reward = reward_ctrl + reward_run
|
|
done = False
|
|
return ob, reward, done, dict(reward_run=reward_run, reward_ctrl=reward_ctrl)
|
|
|
|
def _get_obs(self):
|
|
return np.concatenate(
|
|
[
|
|
self.sim.data.qpos.flat[1:],
|
|
self.sim.data.qvel.flat,
|
|
]
|
|
)
|
|
|
|
def reset_model(self):
|
|
qpos = self.init_qpos + self.np_random.uniform(
|
|
low=-0.1, high=0.1, size=self.model.nq
|
|
)
|
|
qvel = self.init_qvel + self.np_random.randn(self.model.nv) * 0.1
|
|
self.set_state(qpos, qvel)
|
|
obs = self._get_obs()
|
|
return obs
|
|
|
|
def viewer_setup(self):
|
|
self.viewer.cam.distance = self.model.stat.extent * 0.5
|