mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
58 lines
1.5 KiB
ReStructuredText
58 lines
1.5 KiB
ReStructuredText
.. _mars-on-ray:
|
|
|
|
Mars on Ray
|
|
============
|
|
|
|
.. _`issue on GitHub`: https://github.com/mars-project/mars/issues
|
|
|
|
|
|
`Mars`_ is a tensor-based unified framework for large-scale data computation which scales Numpy, Pandas and Scikit-learn.
|
|
Mars on Ray makes it easy to scale your programs with a Ray cluster.
|
|
|
|
.. note::
|
|
|
|
This API is experimental in Mars. If you encounter any bugs, please file an `issue on GitHub`_.
|
|
|
|
|
|
.. _`Mars`: https://docs.pymars.org
|
|
|
|
|
|
Installation
|
|
-------------
|
|
You can simply install Mars via pip:
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install pymars>=0.6.0a1
|
|
|
|
|
|
Getting started
|
|
----------------
|
|
|
|
It's easy to run Mars jobs on a Ray cluster. Use ``from mars.session import new_session``
|
|
and run ``new_session(backend='ray').as_default()``; this will create
|
|
a Mars session for Ray as the default session, and then all Mars tasks will be
|
|
submitted to Ray. Arguments will be passed to ``ray.init()`` when
|
|
creating a Mars session like this:
|
|
``new_session(backend='ray', address=<address>, num_cpus=<num_cpus>)``.
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
from mars.session import new_session
|
|
ray_session = new_session(backend='ray').as_default()
|
|
|
|
import mars.dataframe as md
|
|
import mars.tensor as mt
|
|
|
|
t = mt.random.rand(100, 4, chunk_size=30)
|
|
df = md.DataFrame(t, columns=list('abcd'))
|
|
print(df.describe().execute())
|
|
|
|
|
|
.. warning::
|
|
|
|
`Mars remote API`_ is not available for now.
|
|
|
|
|
|
.. _`Mars remote API`: https://docs.pymars.org/en/latest/getting_started/remote.html
|